中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (5): 512-516.doi: 10.19982/j.issn.1000-6621.20210686
收稿日期:
2021-11-30
出版日期:
2022-05-10
发布日期:
2022-05-04
通信作者:
杨国平
E-mail:qjygpp33@163.com
基金资助:
LI Yu-jie, YANG Yu-ting, YANG Guo-ping()
Received:
2021-11-30
Online:
2022-05-10
Published:
2022-05-04
Contact:
YANG Guo-ping
E-mail:qjygpp33@163.com
Supported by:
摘要:
糖尿病是机体罹患结核病或进展为重症结核病的危险因素之一,其高糖状态引发的炎性环境可导致机体抗结核感染固有免疫细胞吞噬功能受损、相关抗原提呈细胞递呈延迟。继而适应性免疫应答诱导分化的异常会影响机体CD4+ 及CD8+ T细胞的抗结核分枝杆菌感染作用,导致相关细胞因子分泌异常并最终引起机体免疫功能紊乱,加速结核感染进程。为此,笔者就糖尿病对机体抗结核感染的固有免疫机制和适应性免疫反应影响的研究进展进行综述,为糖尿病患者的抗炎治疗及制定合理的免疫治疗策略提供基础。
中图分类号:
李玉洁, 杨雨婷, 杨国平. 糖尿病合并结核感染的固有免疫和适应性免疫反应的研究进展[J]. 中国防痨杂志, 2022, 44(5): 512-516. doi: 10.19982/j.issn.1000-6621.20210686
LI Yu-jie, YANG Yu-ting, YANG Guo-ping. Research progress of innate immunity and adaptive immune response in diabetic patients complicated with tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2022, 44(5): 512-516. doi: 10.19982/j.issn.1000-6621.20210686
[1] | World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. |
[2] |
Al-Rifai RH, Pearson F, Critchley JA, et al. Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis. PLoS One, 2017, 12(11): e0187967. doi: 10.1371/journal.pone.0187967.
doi: 10.1371/journal.pone.0187967 URL |
[3] |
Ferlita S, Yegiazaryan A, Noori N, et al. Type 2 Diabetes Mellitus and Altered Immune System Leading to Susceptibility to Pathogens, Especially Mycobacterium tuberculosis. J Clin Med, 2019, 8(12): 2219. doi: 10.3390/jcm8122219.
doi: 10.3390/jcm8122219 |
[4] |
毛毅, 范琳, 刘勇. 肺结核并发糖尿病的诊治研究进展. 中国防痨杂志, 2019, 41(12): 1325-1329. doi: 10.3969/j.issn.1000-6621.2019.12.015.
doi: 10.3969/j.issn.1000-6621.2019.12.015 |
[5] |
林岩, 邓国防. 糖尿病并发结核病治疗中多学科合作应注意的问题. 中国防痨杂志, 2021, 43(7): 649-652. doi: 10.3969/j.issn.1000-6621.2021.7.002.
doi: 10.3969/j.issn.1000-6621.2021.7.002 |
[6] |
Masood KI, Irfan M, Masood Q, et al. Latent M.tuberculosis infection is associated with increased inflammatory cytokine and decreased suppressor of cytokine signalling (SOCS)-3 in the diabetic host. Scand J Immunol, 2021: e13134. doi: 10.1111/sji.13134.
doi: 10.1111/sji.13134 |
[7] |
Mo J, Jin R, Yan Q, et al. Quantitative analysis of glycation and its impact on antigen binding. MAbs, 2018, 10(3): 406-415. doi: 10.1080/19420862.2018.1438796.
doi: 10.1080/19420862.2018.1438796 URL |
[8] |
Ferlita S, Yegiazaryan A, Noori N, et al. Type 2 Diabetes Mellitus and Altered Immune System Leading to Susceptibility to Pathogens, Especially Mycobacterium tuberculosis (Review). J Clin Med, 2019, 8(12): 2219. doi: 10.3390/jcm8122219.
doi: 10.3390/jcm8122219 URL |
[9] |
Arias L, Goig GA, Cardona P, et al. Influence of Gut Microbiota on Progression to Tuberculosis Generated by High Fat Diet-Induced Obesity in C3HeB/FeJ Mice. Front Immunol, 2019, 10: 2464. doi: 10.3389/fimmu.2019.02464.
doi: 10.3389/fimmu.2019.02464 URL |
[10] |
Carlberg C. Vitamin D Signaling in the Context of Innate Immunity: Focus on Human Monocytes. Front Immunol, 2019, 10: 2211. doi: 10.3389/fimmu.2019.02211.
doi: 10.3389/fimmu.2019.02211 pmid: 31572402 |
[11] |
Zhao X, Yuan Y, Lin Y, et al. Vitamin D status of tuberculosis patients with diabetes mellitus in different economic areas and associated factors in China. PLoS One, 2018, 13(11): e0206372. doi: 10.1371/journal.pone.0206372.
doi: 10.1371/journal.pone.0206372 URL |
[12] |
Kumar NP, Moideen K, Bhootra Y, et al. Elevated circulating levels of monocyte activation markers among tuberculosis patients with diabetes co-morbidity. Immunology, 2019, 156(3): 249-258. doi: 10.1111/imm.13023.
doi: 10.1111/imm.13023 |
[13] |
Torres M, Herrera MT, Fabián-San-Miguel G, et al. The Intracellular Growth of M.tuberculosis Is More Associated with High Glucose Levels Than with Impaired Responses of Monocytes from T2D Patients. J Immunol Res, 2019, 2019: 1462098. doi: 10.1155/2019/1462098.
doi: 10.1155/2019/1462098 |
[14] |
Kundu J, Verma A, Verma I, et al. Proteomic changes in Mycobacterium tuberculosis H37Rv under hyperglycemic conditions favour its growth through altered expression of Tgs3(Rv3234c) and supportive proteins (Rv0547c, AcrA1 and Mpa). Tuberculosis (Edinb), 2019, 115: 154-160. doi: 10.1016/j.tube.2019.03.006.
doi: 10.1016/j.tube.2019.03.006 URL |
[15] |
Lopez-Lopez N, Martinez AGR, Garcia-Hernandez MH, et al. Type-2 diabetes alters the basal phenotype of human macrophages and diminishes their capacity to respond, internalise, and control Mycobacterium tuberculosis. Mem Inst Oswaldo Cruz, 2018, 113(4): e170326. doi: 10.1590/0074-02760170326.
doi: 10.1590/0074-02760170326 |
[16] |
Martinez N, Ketheesan N, West K, et al. Impaired Recognition of Mycobacterium tuberculosis by Alveolar Macrophages From Diabetic Mice. J Infect Dis, 2016, 214(11): 1629-1637. doi: 10.1093/infdis/jiw436.
doi: 10.1093/infdis/jiw436 pmid: 27630197 |
[17] |
Alim MA, Sikder S, Sathkumara H, et al. Dysregulation of key cytokines may contribute to increased susceptibility of diabetic mice to Mycobacterium bovis BCG infection. Tuberculosis (Edinb), 2019, 115: 113-120. doi: 10.1016/j.tube.2019.02.005.
doi: 10.1016/j.tube.2019.02.005 URL |
[18] |
Vance J, Santos A, Sadofsky L, et al. Effect of High Glucose on Human Alveolar Macrophage Phenotype and Phagocytosis of Mycobacteria. Lung, 2019, 197(1): 89-94. doi: 10.1007/s00408-018-0181-z.
doi: 10.1007/s00408-018-0181-z URL |
[19] |
Vrieling F, Wilson L, Rensen PCN, et al. Oxidized low-density lipoprotein (oxLDL) supports Mycobacterium tuberculosis survival in macrophages by inducing lysosomal dysfunction. PLoS Pathog, 2019, 15(4): e1007724. doi: 10.1371/journal.ppat.1007724.
doi: 10.1371/journal.ppat.1007724 URL |
[20] |
Bizzell E, Sia JK, Quezada M, et al. Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses. J Leukoc Biol, 2018, 103(4): 739-748. doi: 10.1002/JLB.4A0917-363RR.
doi: 10.1002/JLB.4A0917-363RR URL |
[21] |
Kumar NP, Moideen K, Dhakshinraj SD, et al. Profiling leucocyte subsets in tuberculosis-diabetes co-morbidity. Immunology, 2015, 146(2): 243-250. doi: 10.1111/imm.12496.
doi: 10.1111/imm.12496 URL |
[22] |
Monroy-Mérida G, Guzmán-Beltrán S, Hernández F, et al. High Glucose Concentrations Impair the Processing and Presentation of Mycobacterium tuberculosis Antigens In Vitro. Biomolecules, 2021, 11(12): 1763. doi: 10.3390/biom11121763.
doi: 10.3390/biom11121763 URL |
[23] |
Gilardini Montani MS, Granato M, Cuomo L, et al. High glucose and hyperglycemic sera from type 2 diabetic patients impair DC differentiation by inducing ROS and activating Wnt/β-catenin and p38 MAPK. Biochim Biophys Acta, 2016, 1862(4): 805-813. doi: 10.1016/j.bbadis.2016.01.001.
doi: S0925-4439(16)00002-8 pmid: 26769359 |
[24] |
Kumar NP, Moideen K, Viswanathan V, et al. Effect of anti-tuberculosis treatment on the systemic levels of tissue inhibitors of metalloproteinases in tuberculosis-Diabetes co-morbidity. J Clin Tuberc Other Mycobact Dis, 2021, 23: 100237. doi: 10.1016/j.jctube.2021.100237.
doi: 10.1016/j.jctube.2021.100237 |
[25] |
Ayelign B, Negash M, Genetu M, et al. Immunological Impacts of Diabetes on the Susceptibility of Mycobacterium tuberculosis. J Immunol Res, 2019, 2019: 6196532. doi: 10.1155/2019/6196532.
doi: 10.1155/2019/6196532 |
[26] |
Chumburidze-Areshidze N, Kezeli T, Avaliani Z, et al. The Relationship Between Type-2 Diabetes and Tuberculosis. Georgian Med News, 2020(300): 69-74.
pmid: 32383705 |
[27] |
Cheekatla SS, Tripathi D, Venkatasubramanian S, et al. NK-CD11c+ Cell Crosstalk in Diabetes Enhances IL-6-Mediated Inflammation during Mycobacterium tuberculosis Infection. PLoS Pathog, 2016, 12(10): e1005972. doi: 10.1371/journal.ppat.1005972.
doi: 10.1371/journal.ppat.1005972 URL |
[28] |
Leisching GR. PI3-Kinase δγ Catalytic Isoforms Regulate the Th-17 Response in Tuberculosis. Front Immunol, 2019, 10: 2583. doi: 10.3389/fimmu.2019.02583.
doi: 10.3389/fimmu.2019.02583 pmid: 31736982 |
[29] |
Wang X, Ma A, Han X, et al. T Cell Profile was Altered in Pulmonary Tuberculosis Patients with Type 2 Diabetes. Med Sci Monit, 2018, 24: 636-642. doi: 10.12659/msm.905651.
doi: 10.12659/msm.905651 URL |
[30] |
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci, 2020, 77(10): 1859-1878. doi: 10.1007/s00018-019-03353-5.
doi: 10.1007/s00018-019-03353-5 URL |
[31] |
Radhakrishnan RK, Thandi RS, Tripathi D, et al. BCG vaccination reduces the mortality of Mycobacterium tuberculosis-infected type 2 diabetes mellitus mice. JCI Insight, 2020, 5(5): e133788. doi: 10.1172/jci.insight.133788.
doi: 10.1172/jci.insight.133788 URL |
[32] |
Kathamuthu GR, Kumar NP, Moideen K, et al. Decreased Frequencies of Gamma/Delta T Cells Expressing Th1/Th17 Cytokine, Cytotoxic, and Immune Markers in Latent Tuberculosis-Diabetes/Pre-Diabetes Comorbidity. Front Cell Infect Microbiol, 2021, 11: 756854. doi: 10.3389/fcimb.2021.756854.
doi: 10.3389/fcimb.2021.756854 URL |
[33] |
Kumar NP, Moideen K, Banurekha VV, et al. Modulation of Th1/Tc1 and Th17/Tc17 responses in pulmonary tuberculosis by IL-20 subfamily of cytokines. Cytokine, 2018, 108: 190-196. doi: 10.1016/j.cyto.2018.04.005.
doi: 10.1016/j.cyto.2018.04.005 URL |
[34] |
Kumar NP, Moideen K, George PJ, et al. Impaired Cytokine but Enhanced Cytotoxic Marker Expression in Mycobacterium tuberculosis-Induced CD8+ T Cells in Individuals With Type 2 Diabetes and Latent Mycobacterium tuberculosis Infection. J Infect Dis, 2016, 213(5): 866-870. doi: 10.1093/infdis/jiv484.
doi: 10.1093/infdis/jiv484 URL |
[35] |
Ponnana M, Sivangala R, Joshi L, et al. IL-6 and IL-18 cytokine gene variants of pulmonary tuberculosis patients with co-morbid diabetes mellitus and their household contacts in Hyderabad. Gene, 2017, 627: 298-306. doi: 10.1016/j.gene.2017.06.046.
doi: 10.1016/j.gene.2017.06.046 URL |
[36] |
Meenakshi P, Ramya S, Lavanya J, et al. Effect of IFN-γ, IL-12 and IL-10 cytokine production and mRNA expression in tuberculosis patients with diabetes mellitus and their household contacts. Cytokine, 2016, 81: 127-136. doi: 10.1016/j.cyto.2016.03.009.
doi: 10.1016/j.cyto.2016.03.009 pmid: 27002606 |
[37] |
Bright MR, Curtis N, Messina NL. The role of antibodies in Bacille Calmette Guérin-mediated immune responses and protection against tuberculosis in humans: A systematic review. Tuberculosis (Edinb), 2021, 131: 101947. doi: 10.1016/j.tube.2020.101947.
doi: 10.1016/j.tube.2020.101947 URL |
[38] |
SantaCruz-Calvo S, Bharath L, Pugh G, et al. Adaptive immune cells shape obesity-associated type 2 diabetes mellitus and less prominent comorbidities. Nat Rev Endocrinol, 2022, 18(1): 23-42. doi: 10.1038/s41574-021-00575-1.
doi: 10.1038/s41574-021-00575-1 URL |
[39] |
Daryabor G, Atashzar MR, Kabelitz D, et al. The Effects of Type 2 Diabetes Mellitus on Organ Metabolism and the Immune System. Front Immunol, 2020, 11: 1582. doi: 10.3389/fimmu.2020.01582.
doi: 10.3389/fimmu.2020.01582 URL |
[1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
[4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
[5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
[7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||