中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (7): 724-728.doi: 10.3969/j.issn.1000-6621.2021.07.014
收稿日期:2021-04-05
出版日期:2021-07-10
发布日期:2021-07-09
通信作者:
陆宇
E-mail:luyu4876@hotmail.com
基金资助:Received:2021-04-05
Online:2021-07-10
Published:2021-07-09
Contact:
LU Yu
E-mail:luyu4876@hotmail.com
摘要:
抗结核药物的早期杀菌活性反映药物进入血液和组织后杀灭代谢和增殖旺盛的结核分枝杆菌的能力,以实现早期控制疾病和降低传染性的目的。现有的比较成熟的药物早期杀菌活性的测定方法主要包括在固体培养基上进行痰液菌落计数及在液体培养基上测定确定阳性时间。通常情况下,两种方法的测定结果保持一致。早期杀菌活性研究目前是新型抗结核药物开发过程的重要组成部分,可以预测抗结核药物的杀菌活性,但其不能测定药物的灭菌活性,这只能根据常规临床试验治疗后的复发率或2个月的痰菌阴转率来估计。当前,结核病的流行情况严峻,治疗面临困难和挑战,迫切需要研发杀菌活性较高的新药来积极遏制结核分枝杆菌的生长以及结核病的传播。笔者拟从主要抗结核药品的早期杀菌活性及主要研究方法进行综述,旨在为更好的应用现有药物及新药研发提供参考。
姚蓉, 陆宇. 抗结核药物早期杀菌活性研究及进展[J]. 中国防痨杂志, 2021, 43(7): 724-728. doi: 10.3969/j.issn.1000-6621.2021.07.014
YAO Rong, LU Yu. Research and progress of early bactericidal activity of anti-tuberculosis drugs[J]. Chinese Journal of Antituberculosis, 2021, 43(7): 724-728. doi: 10.3969/j.issn.1000-6621.2021.07.014
| [1] |
Global Alliance for TB Drug Development.Tuberculosis. Scientific blueprint for tuberculosis drug development. Tuberculosis (Edinb), 2001, 81Suppl 1:1-52. doi: 10.1054/tube.2001.0288.
doi: 10.1054/tube.2001.0288 URL |
| [2] |
Jindani A, Aber VR, Edwards EA, et al. The early bactericidal activity of drugs in patients with pulmonary tuberculosi. Am Rev Respir Dis, 1980, 121(6):939-949. doi: 10.1164/arrd.1980.121.6.939.
doi: 10.1164/arrd.1980.121.6.939 |
| [3] |
Sirgel FA, Botha FJ, Parkin DP, et al. The early bactericidal activity of rifabutin in patients with pulmonary tuberculosis measured by sputum viable counts: a new method of drug assessment. J Antimicrob Chemother, 1993, 32(6):867-875. doi: 10.1093/jac/32.6.867.
doi: 10.1093/jac/32.6.867 URL |
| [4] |
Dietze R, Teixeira L, Rocha LM, et al. Safety and bactericidal activity of rifalazil in patients with pulmonary tuberculosis. Antimicrob Agents Chemother, 2001, 45(7):1972-1976. doi: 10.1128/AAC.45.7.1972-1976.2001.
doi: 10.1128/AAC.45.7.1972-1976.2001 URL |
| [5] | Peres RL, Maciel EL, Morais CG, et al. Comparison of two concentrations of NALC-NaOH for decontamination of sputum for mycobacterial culture. Int J Tuberc Lung Dis, 2009, 13(12):1572-1575. |
| [6] |
Nascimento CPD, Hadad DJ, Castellani LGS, et al. Sputum sample collected over a period of 5h: A reliable procedure for early bactericidal activity studies. Diagn Microbiol Infect Dis, 2018, 92(1):25-30. doi: 10.1016/j.diagmicrobio.2018.04.013.
doi: 10.1016/j.diagmicrobio.2018.04.013 URL |
| [7] |
Pheiffer C, Carroll NM, Beyers N, et al. Time to detection of Mycobacterium tuberculosis in BACTEC systems as a viable alternative to colony counting. Int J Tuberc Lung Dis, 2008, 12(7):792-798.
pmid: 18544206 |
| [8] |
Bark CM, Gitta P, Ogwang S, et al. Comparison of time to positive and colony counting in an early bactericidal activity study of anti-tuberculosis treatment. Int J Tuberc Lung Dis, 2013, 17(11):1448-1451. doi: 10.5588/ijtld.13.0063.
doi: 10.5588/ijtld.13.0063 URL |
| [9] |
Diacon AH, Maritz JS, Venter A, et al. Time to liquid culture positivity can substitute for colony counting on agar plates in early bactericidal activity studies of antituberculosis agents. Clin Microbiol Infect, 2012, 18(7):711-717. doi: 10.1111/j.1469-0691.2011.03626.x.
doi: 10.1111/j.1469-0691.2011.03626.x URL |
| [10] |
Dooley KE, Miyahara S, von Groote-Bidlingmaier F, et al. Early Bactericidal Activity of Different Isoniazid Doses for Drug Resistant TB (INHindsight): A Randomized Open-label Clinical Trial. Am J Respir Crit Care Med, 2020, 201(11):1416-1424. doi: 10.1164/rccm.201910-1960OC.
doi: 10.1164/rccm.201910-1960OC URL |
| [11] |
Donald PR, Sirgel FA, Botha FJ, et al. The early bactericidal activity of isoniazid related to its dose size in pulmonary tuberculosis. Am J Respir Crit Care Med, 1997, 156(3 Pt 1):895-900. doi: 10.1164/ajrccm.156.3.9609132.
doi: 10.1164/ajrccm.156.3.9609132 URL |
| [12] |
Chan SL, Yew WW, Ma WK, et al. The early bactericidal activity of rifabutin measured by sputum viable counts in Hong Kong patients with pulmonary tuberculosis. Tuber Lung Dis, 1992, 73(1):33-38. doi: 10.1016/0962-8479(92)90077-W.
doi: 10.1016/0962-8479(92)90077-W URL |
| [13] |
Diacon AH, Patientia RF, Venter A, et al. Early bactericidal activity of high-dose rifampin in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob Agents Chemother, 2007, 51(8):2994-2996. doi: 10.1128/AAC.01474-06.
doi: 10.1128/AAC.01474-06 URL |
| [14] |
Boeree MJ, Diacon AH, Dawson R, et al. A dose-ranging trial to optimize the dose of rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med, 2015, 191(9):1058-1065. doi: 10.1164/rccm.201407-1264OC.
doi: 10.1164/rccm.201407-1264OC URL |
| [15] | Botha FJ, Sirgel FA, Parkin DP, et al. Early bactericidal activity of ethambutol, pyrazinamide and the fixed combination of isoniazid, rifampicin and pyrazinamide (Rifater) in patients with pulmonary tuberculosis. S Afr Med J, 1996, 86(2):155-158. |
| [16] |
Donald PR, Sirgel FA, Venter A, et al. The early bactericidal activity of streptomycin. Int J Tuberc Lung Dis, 2002, 6(8):693-698.
pmid: 12150481 |
| [17] |
Johnson JL, Hadad DJ, Boom WH, et al. Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis, 2006, 10(6):605-612.
pmid: 16776446 |
| [18] |
Pletz MW, De Roux A, Roth A, et al. Early bactericidal activity of moxifloxacin in treatment of pulmonary tuberculosis: a prospective, randomized study. Antimicrob Agents Chemother, 2004, 48(3):780-782. doi: 10.1128/aac.48.3.780-782.2004.
doi: 10.1128/aac.48.3.780-782.2004 URL |
| [19] |
Sirgel FA, Botha FJ, Parkin DP, et al. The early bactericidal activity of ciprofloxacin in patients with pulmonary tuberculosis. Am J Respir Crit Care Med, 1997, 156(3 Pt 1):901-905. doi: 10.1164/ajrccm.156.3.9611066.
doi: 10.1164/ajrccm.156.3.9611066 URL |
| [20] |
Dietze R, Hadad DJ, McGee B, et al. Early and extended early bactericidal activity of linezolid in pulmonary tuberculosis. Am J Respir Crit Care Med, 2008, 178(11):1180-1185. doi: 10.1164/rccm.200806-892OC.
doi: 10.1164/rccm.200806-892OC URL |
| [21] |
Ammerman NC, Swanson RV, Tapley A, et al. Clofazimine has delayed antimicrobial activity against Mycobacterium tuberculosis both in vitro and in vivo. J Antimicrob Chemother, 2017, 72(2):455-461. doi: 10.1093/jac/dkw417.
doi: 10.1093/jac/dkw417 pmid: 27798204 |
| [22] |
Donald PR, Sirgel FA, Venter A, et al. The early bactericidal activity of amikacin in pulmonary tuberculosis. Int J Tuberc Lung Dis, 2001, 5(6):533-538.
pmid: 11409580 |
| [23] |
Donald PR, Sirgel FA, Venter A, et al. The early bactericidal activity of a low-clearance liposomal amikacin in pulmonary tuberculosis. J Antimicrob Chemother, 2001, 48(6):877-880. doi: 10.1093/jac/48.6.877.
doi: 10.1093/jac/48.6.877 URL |
| [24] |
Sirgel FA, Fourie PB, Donald PR, et al. The early bactericidal activities of rifampin and rifapentine in pulmonary tuberculosis. Am J Respir Crit Care Med, 2005, 172(1):128-135. doi: 10.1164/rccm.200411-1557OC.
doi: 10.1164/rccm.200411-1557OC URL |
| [25] |
Cox E, Laessig K. FDA approval of bedaquiline-the benefit-risk balance for drug-resistant tuberculosis. N Engl J Med, 2014, 371(8):689-691. doi: 10.1056/NEJMp1314385.
doi: 10.1056/NEJMp1314385 URL |
| [26] |
Rustomjee R, Diacon AH, Allen J, et al. Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. Antimicrob Agents Chemother, 2008, 52(8):2831-2835. doi: 10.1128/AAC.01204-07.
doi: 10.1128/AAC.01204-07 URL |
| [27] |
Diacon AH, Dawson R, von Groote-Bidlingmaier F, et al. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet, 2012, 380(9846):986-993. doi: 10.1016/S0140-6736(12)61080-0.
doi: 10.1016/S0140-6736(12)61080-0 URL |
| [28] |
Diacon AH, Dawson R, Von Groote-Bidlingmaier F, et al. Randomized dose-ranging study of the 14-day early bactericidal activity of bedaquiline (TMC207) in patients with sputum microscopy smear-positive pulmonary tuberculosis. Antimicrob Agents Chemother, 2013, 57(5):2199-2203. doi: 10.1128/AAC.02243-12.
doi: 10.1128/AAC.02243-12 URL |
| [29] |
Pontali E, Centis R, D’Ambrosio L, et al. Recent evidence on delamanid use for rifampicin-resistant tuberculosis. J Thorac Dis, 2019, 11(Suppl 3):S457-S460. doi: 10.21037/jtd.2018.11.26.
doi: 10.21037/jtd.2018.11.26 URL |
| [30] |
Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis, 2011, 15(7):949-954. doi: 10.5588/ijtld.10.0616.
doi: 10.5588/ijtld.10.0616 URL |
| [31] |
Saliu OY, Crismale C, Schwander SK, et al. Bactericidal activity of OPC-67683 against drug-tolerant Mycobacterium tuberculosis. J Antimicrob Chemother, 2007, 60(5):994-998. doi: 10.1093/jac/dkm291.
doi: 10.1093/jac/dkm291 URL |
| [32] |
Diacon AH, Dawson R, Hanekom M, et al. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother, 2010, 54(8):3402-3407. doi: 10.1128/AAC.01354-09.
doi: 10.1128/AAC.01354-09 URL |
| [33] |
Diacon AH, Dawson R, du Bois J, et al. Phase Ⅱ dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother, 2012, 56(6):3027-3031. doi: 10.1128/AAC.06125-11.
doi: 10.1128/AAC.06125-11 URL |
| [34] |
Ahmad Z, Peloquin CA, Singh RP, et al. PA-824 exhibits time-dependent activity in a murine model of tuberculosis. Antimicrob Agents Chemother, 2011, 55(1):239-245. doi: 10.1128/AAC.00849-10.
doi: 10.1128/AAC.00849-10 URL |
| [35] |
de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a New Antituberculosis Agent. N Engl J Med, 2020, 382(13):1280-1281. doi: 10.1056/NEJMc1913327.
doi: 10.1056/NEJMc1913327 URL |
| [36] |
Furin JJ, Du Bois J, van Brakel E, et al. Early Bactericidal Activity of AZD5847 in Patients with Pulmonary Tuberculosis. Antimicrob Agents Chemother, 2016, 60(11):6591-6599. doi: 10.1128/AAC.01163-16.
doi: 10.1128/AAC.01163-16 URL |
| [1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
| [2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
| [3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
| [4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
| [5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
| [6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
| [7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
| [8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
| [9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
| [10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
| [11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
| [12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
| [13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
| [14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
| [15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010202007215号
ip访问总数: ip当日访问总数: 当前在线人数:
本作品遵循Creative Commons Attribution 3.0 License授权许可
