中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (3): 285-290.doi: 10.3969/j.issn.1000-6621.2021.03.016
收稿日期:
2020-11-10
出版日期:
2021-03-10
发布日期:
2021-03-03
通信作者:
杨松,唐神结
E-mail:yangsong5@aliyun.com;tangsj1106@vip.sina.com
基金资助:
WANG Le-le, YANG Song(), TANG Shen-jie(
)
Received:
2020-11-10
Online:
2021-03-10
Published:
2021-03-03
Contact:
YANG Song,TANG Shen-jie
E-mail:yangsong5@aliyun.com;tangsj1106@vip.sina.com
摘要:
治疗性药物监测(therapeutic drug monitoring,TDM)是应用血液、尿液或唾液中的药品浓度确定药品剂量,为患者制定治疗方案,以获得最佳疗效,减少耐药及不良反应的检测技术。TDM是个体化治疗的重要策略,可为临床调整药品剂量提供参考。结核病患者血药浓度个体差异大、不良反应多,常导致治疗失败、复发和耐药。目前在结核病治疗中TDM尚未实现标准化,也无任何官方指南。但最近国外的指南推荐对有药品暴露改变风险或预后不良的结核病患者,在治疗期间应行TDM。因此,作者分别就TDM的定义及临床意义、检测技术方法、抗结核药品治疗应用情况作一综述,为临床医师提供参考。
王乐乐, 杨松, 唐神结. 治疗性药物监测在结核病治疗中的应用进展[J]. 中国防痨杂志, 2021, 43(3): 285-290. doi: 10.3969/j.issn.1000-6621.2021.03.016
WANG Le-le, YANG Song, TANG Shen-jie. A review of application of therapeutic drug monitoring in tuberculosis treatment[J]. Chinese Journal of Antituberculosis, 2021, 43(3): 285-290. doi: 10.3969/j.issn.1000-6621.2021.03.016
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] | 中国药理学会治疗药物监测研究专业委员会. 治疗药物监测工作规范专家共识(2019年版). 中国医院用药评价与分析, 2019,19(8):897-902. doi: 10.14009/j.issn.1672-2124.2019.08.001. |
[3] |
Heysell SK, Mtabho C, Mpagama S, et al. Plasma drug activity assay for treatment optimization in tuberculosis patients. Antimicrob Agents Chemother, 2011,55(12):5819-5825. doi: 10.1128/AAC.05561-11.
doi: 10.1128/AAC.05561-11 URL pmid: 21968363 |
[4] |
Zhu H, Guo SC, Liu ZQ, et al. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis, 2018,22(8):931-936. doi: 10.5588/ijtld.17.0648.
doi: 10.5588/ijtld.17.0648 URL pmid: 29991404 |
[5] |
Sharma PK, Bansal R, Bhardwaj AK, et al. Plasma levels of rifampicin and pyrazinamide with pre and post meal administration intuberculosis patients. Indian J Tuberc, 2018,65(1):35-40. doi: 10.1016/j.ijtb.2017.08.004.
URL pmid: 29332645 |
[6] | Eliasson E, Lindh JD, Malmström RE, et al. Therapeutic drug monitoring for tomorrow. Eur J Clin Pharmacol, 2013,69(Suppl 1):25-32. doi: 10.1007/s00228-013-1504-x. |
[7] |
Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis, 2013,208(9):1464-1473. doi: 10.1093/infdis/jit352.
doi: 10.1093/infdis/jit352 URL pmid: 23901086 |
[8] |
Falzon D, Jaramillo E, Gilpin C, et al. Therapeutic drug monitoring to prevent acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. Eur Respir J, 2017,49(4):1700317. doi: 10.1183/13993003.00317-2017.
doi: 10.1183/13993003.00317-2017 URL pmid: 28446562 |
[9] |
Peloquin C. The role of therapeutic drug monitoring in Mycobacterial infections. Microbiol Spectr, 2017,5(1). doi: 10.1128/microbiolspec.TNMI7-0029-2016.
URL pmid: 28155806 |
[10] | Bolhuis MS, Akkerman OW, Sturkenboom MG, et al. Individualized treatment of multidrug-resistant tuberculosis using therapeutic drug monitoring. Int J Mycobacteriol, 2016,Suppl 1:S44-S45. doi: 10.1016/j.ijmyco.2016.07.003. |
[11] | Vu DH, Koster RA, Alffenaar JW, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Analyt Technol Biomed Life Sci, 2011,879(15/16):1063-1070. doi: 10.1016/j.jchromb.2011.03.017. |
[12] |
van Beek SW, Ter Heine R, Keizer RJ, et al. Personalized tuberculosis treatment through model-informed dosing of rifampicin. Clin Pharmacokinet, 2019,58(6):815-826. doi: 10.1007/s40262-018-00732-2.
doi: 10.1007/s40262-018-00732-2 URL pmid: 30671890 |
[13] | 国家药典委员会. 中华人民共和国药典(2015年版). 北京: 中国医药科技出版社, 2015. |
[14] |
Bozorg BD, Goodarzi A, Fahimi F, et al. Simultaneous determination of isoniazid, pyrazinamide and rifampin in human plasma by high-performance liquid chromatography and UV Detection. Iran J Pharm Res, 2019,18(4):1735-1741. doi: 10.22037/ijpr.2019.1100849.
doi: 10.22037/ijpr.2019.1100849 URL pmid: 32184842 |
[15] | 雷倩, 赵嫄, 王皓, 等. 3种二线抗结核药品血药浓度测定及其影响因素. 药品分析杂志, 2020,40(8):1405-1412. doi: 10.16155/j.0254-1793.2020.08.10. |
[16] | 邹品娇, 吴娟, 姜云平, 等. 结核患者胸水中异烟肼浓度的测定. 华西医学, 2014,29(8):1483-1486. doi: 10.7507/1002-0179.20140455. |
[17] | 张晓东, 姚芳. 结核性脑膜炎患者脑脊液利福霉素钠浓度监测. 中国当代医药, 2017,24(5):12-14. doi: 10.3969/j.issn.1674-4721.2017.05.004. |
[18] | 石浩强, 何娟, 陆佳倩, 等. LC-MS/MS及HPLC法检测利奈唑胺血药浓度及临床应用. 中国药师, 2017,20(10):1718-1722. doi: 10.3969/j.issn.1008-049X.2017.10.004. |
[19] |
Fachi MM, Vilhena RO, Boger B, et al. LC-QToF-MS method for quantification of ethambutol, isoniazid, pyrazinamide and rifampicin in human plasma and its application. Biomed Chromatogr, 2020,34(5):e4812. doi: 10.1002/bmc.4812.
doi: 10.1002/bmc.4812 URL pmid: 32068899 |
[20] | 李岑, 高敬林, 石蕊, 等. UPLC与HPLC测定人血浆中多索茶碱的比较. 华西药学杂志, 2017,32(3):281-283. doi: 10.13375/j.cnki.wcjps.2017.03.019. |
[21] |
Wu L, Ye Z, Liu H, et al. Rapid and highly sensitive quantification of the anti-tuberculosis agents isoniazid, ethambutol, pyrazinamide, rifampicin and rifabutin in human plasma by UPLC-MS/MS. J Pharm Biomed Anal, 2020,180:113076. doi: 10.1016/j.jpba.2019.113076.
doi: 10.1016/j.jpba.2019.113076 URL pmid: 31896523 |
[22] |
Wang X, Zhang H, Han Y, et al. Rapid and simultaneous determination of ten anti-tuberculosis drugs in human plasma by UPLC-MS/MS with applications in therapeutic drug monitoring. J Chromatogr B Analyt Technol Biomed Life Sci, 2020,1152:122246. doi: 10.1016/j.jchromb.2020.122246.
doi: 10.1016/j.jchromb.2020.122246 URL pmid: 32668377 |
[23] |
Niward K, Ek Blom L, Davies Forsman L, et al. Plasma Levels of Rifampin Correlate with the Tuberculosis Drug Activity Assay. Antimicrob Agents Chemother, 2018,62(5):e00218-18. doi: 10.1128/AAC.00218-18.
doi: 10.1128/AAC.00218-18 URL pmid: 29483112 |
[24] |
Zentner I, Modongo C, Zetola NM, et al. Urine colorimetry for therapeutic drug monitoring of pyrazinamide during tuberculosis treatment. Int J Infect Dis, 2018,68:18-23. doi: 10.1016/j.ijid.2017.12.017.
doi: 10.1016/j.ijid.2017.12.017 URL pmid: 29253711 |
[25] |
Qing LS, Chen TB, Sun WX, et al. Pharmacokinetics comparison, intestinal absorption and acute toxicity assessment of a novel water-soluble astragaloside IV derivative (Astragalosidic Acid, LS-102). Eur J Drug Metab Pharmacokinet, 2019,44(2):251-259. doi: 10.1007/s13318-018-0515-5.
doi: 10.1007/s13318-018-0515-5 URL pmid: 30315409 |
[26] |
Chen C, Xue Y, Li QM, et al. Neutral loss scan-based strategy for integrated identification of amorfrutin derivatives, new peroxisome proliferator-activated receptor gamma agonists, from amorphafruticosa by UPLC-QqQ-MS/MS and UPLC-Q-TOF-MS. J Am Soc Mass Spectrom, 2018,29(4):685-693. doi: 10.1007/s13361-018-1891-4.
doi: 10.1007/s13361-018-1891-4 URL pmid: 29404969 |
[27] |
Xu Y, Wu J, Liao S, et al. Treating tuberculosis with high doses of anti-TB drugs: mechanisms and outcomes. Ann Clin Microbiol Antimicrob, 2017,16(1):67. doi: 10.1186/s12941-017-0239-4.
doi: 10.1186/s12941-017-0239-4 URL pmid: 28974222 |
[28] | World Health Organization. WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[29] |
Nahid P, Mase SR, Migliori GB, et al. Treatment of drug-resistant tuberculosis. An official ATS/CDC/ERS/IDSA clinical practice guideline. Am J Respir Crit Care Med, 2019,200(10):e93-e142. doi: 10.1164/rccm.201909-1874ST.
doi: 10.1164/rccm.201909-1874ST URL pmid: 31729908 |
[30] |
Kim HY, Ulbricht E, Ahn YK, et al. Therapeutic drug monitoring practice in patients with active tuberculosis; assessment of opportunities. Eur Respir J, 2021,57(1):2002349. doi: 10.1183/13993003.02349-2020.
doi: 10.1183/13993003.02349-2020 URL pmid: 32817005 |
[31] |
Zuur MA, Akkerman OW, Davies Forsman L, et al. Fixed-dose combination and therapeutic drug monitoring in tuberculosis: friend or foe? Eur Respir J, 2016,48(4):1230-1233. doi: 10.1183/13993003.00833-2016.
doi: 10.1183/13993003.00833-2016 URL pmid: 27587558 |
[32] |
Kumar AKH, Chandrasekaran V, Kannan T, et al. Intrapatient variability in plasma rifampicin & isoniazid in tuberculosis patients. Indian J Med Res, 2018,147(3):287-292. doi: 10.4103/ijmr.IJMR_1961_16.
doi: 10.4103/ijmr.IJMR_1961_16 URL pmid: 29923518 |
[33] | Lei Q, Wang H, Zhao Y, et al. Determinants of serum concentration of first-line anti-tuberculosis drugs from China. Medicine (Baltimore), 2019,98(41):e17523. doi: 10.1097/MD.0000000000017523. |
[34] |
Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: An update. Drugs, 74(8):839-854. doi: 10.1007/s40265-014-0222-8.
doi: 10.1007/s40265-014-0222-8 URL pmid: 24846578 |
[35] |
McCallum AD, Sloan DJ. The importance of clinical pharmacokinetic-pharmacodynamic studies in unraveling the determinants of early and late tuberculosis outcomes. Int J Pharmacokinet, 2017,2(3):195-212. doi: 10.4155/ipk-2017-0004.
doi: 10.4155/ipk-2017-0004 URL pmid: 30283633 |
[36] |
Guiastrennec B, Ramachandran G, Karlsson MO, et al. Subo-ptimal antituberculosis drug concentrations and outcomes in small and HIV-coinfected children in india: recommendations for dose modifications. Clin Pharmacol Ther, 2018,104(4):733-741. doi: 10.1002/cpt.987.
doi: 10.1002/cpt.987 URL pmid: 29247506 |
[37] |
Yu X, Zeng X, Shi W, et al. Validation of cycloserine efficacy in treatment of multidrug resistant and extensively drug-resis-tant tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2018,62(3):e01824-17. doi: 10.1128/AAC.01824-17.
doi: 10.1128/AAC.01824-17 URL pmid: 29311073 |
[38] | World Health Organization. Guidelines for the programmatic management of drug-resistant tuberculosis (Emergency update 2008). Geneva: World Health Organization, 2008. |
[39] |
van Altena R, Dijkstra JA, van der Meer ME, et al. Reduced chance of hearing loss associated with therapeutic drug monitoring of aminoglycosides in the treatment of multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2017,61(3):e01400-16. doi: 10.1128/AAC.01400-16.
doi: 10.1128/AAC.01400-16 URL pmid: 28069654 |
[40] |
Modongo C, Pasipanodya JG, Zetola NM, et al. Amikacin concentrations predictive of ototoxicity in multidrug-resistant tuberculosis patients. Antimicrob Agents Chemother, 2015,59(10):6337-6343. doi: 10.1128/AAC.01050-15.
doi: 10.1128/AAC.01050-15 URL pmid: 26248372 |
[41] |
Metcalfe J, Bacchetti P, Gerona R, et al. Association of anti-tuberculosis drug concentrations in hair and treatment outcomes in MDR- and XDR-TB. ERJ Open Res, 2019,5(2):00046-2019. doi: 10.1183/23120541.00046-2019.
doi: 10.1183/23120541.00046-2019 URL pmid: 31041318 |
[42] |
Reckers A, Wen A, Aguilar D, et al. Validated LC-MS/MS Panel for Quantifying 11 Drug-Resistant TB Medications in Small Hair Samples. J Vis Exp, 2020, (159). doi: 10.3791/60861.
doi: 10.3791/60852 URL pmid: 32538901 |
[43] |
Alffenaar JC, Gumbo T, Dooley KE, et al. Integrating pharmacokinetics and pharmacodynamics in operational research to end Tuberculosis. Clin Infect Dis, 2020,70(8):1774-1780. doi: 10.1093/cid/ciz942.
doi: 10.1093/cid/ciz942 URL pmid: 31560376 |
[44] |
Vu DH, Bolhuis MS, Koster RA, et al. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2012,56(11):5758-5763. doi: 10.1128/AAC.01054-12.
doi: 10.1128/AAC.01054-12 URL pmid: 22926568 |
[45] |
van den Elsen SHJ, Oostenbrink LM, Heysell SK, et al. Systematic review of salivary versus blood concentrations of antituberculosis drugs and their potential for salivary therapeutic drug monitoring. Ther Drug Monit, 2018,40(1):17-37. doi: 10.1097/FTD.0000000000000462.
doi: 10.1097/FTD.0000000000000462 URL pmid: 29120971 |
[46] |
van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited sampling strategies using linear regression and the bayesian approach for therapeutic drug monitoring of moxifloxacin in tuberculosis patients. Antimicrob Agents Chemother, 2019,63(7):e00384-19. doi: 10.1128/AAC.00384-19.
doi: 10.1128/AAC.00384-19 URL pmid: 31010868 |
[47] |
van den Elsen SHJ, Sturkenboom MGG, Van’t Boveneind-Vrubleuskaya N, et al. Population pharmacokinetic model and limited sampling strategies for personalized dosing of levofloxacin in tuberculosis patients. Antimicrob Agents Chemother, 2018,62(12):e01092-18. doi: 10.1128/AAC.01092-18.
doi: 10.1128/AAC.01092-18 URL pmid: 30373800 |
[48] |
Alffenaar JWC, Akkerman OW, Kim HY, et al. Precision and personalized medicine and anti-TB treatment: Is TDM feasible for programmatic use? Int J Infect Dis, 2020,92S:S5-S9. doi: 10.1016/j.ijid.2020.01.041.
doi: 10.1016/j.ijid.2020.01.041 URL pmid: 31996324 |
[49] |
Mtabho CM, Semvua HH, van den Boogaard J, et al. Effect of diabetes mellitus on TB drug concentrations in Tanzanian patients. J Antimicrob Chemother, 2019,74(12):3537-3545. doi: 10.1093/jac/dkz368.
doi: 10.1093/jac/dkz368 URL pmid: 31651031 |
[50] |
Perea-Jacobo R, Muñiz-Salazar R, Laniado-Laborín R, et al. Rifampin pharmacokinetics in tuberculosis-diabetes mellitus patients: a pilot study from Baja California, Mexico. Int J Tuberc Lung Dis, 2019,23(9):1012-1016. doi: 10.5588/ijtld.18.0739.
doi: 10.5588/ijtld.18.0739 URL pmid: 31615609 |
[51] |
Dekkers BGJ, Akkerman OW, Alffenaar JWC. Role of therapeutic drug monitoring in treatment optimization in tuberculosis and diabetes mellitus comorbidity. Antimicrob Agents Chemother, 2019,63(2):e02074-18. doi: 10.1128/AAC.02074-18.
doi: 10.1128/AAC.02074-18 URL pmid: 30455234 |
[52] |
Boeree MJ, Heinrich N, Aarnoutse R. et al. High-dose rifampicin, moxifloxacin, and SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet Infect Dis, 2017,17(1):39-49. doi: 10.1016/S1473-3099(16)30274-2.
doi: 10.1016/S1473-3099(16)30274-2 URL pmid: 28100438 |
[53] |
Ouedraogo HG, Matteelli A, Sulis G, et al. Pharmacokinetics of plasma lopinavir and ritonavir in tuberculosis-HIV co-infected African adult patients also receiving rifabutin 150 or 300 mg three times per week. Ann Clin Microbiol Antimicrob, 2020,19(1):3. doi: 10.1186/s12941-020-0345-6.
doi: 10.1186/s12941-020-0345-6 URL pmid: 31969147 |
[54] |
Takayoshi M, Wada K, Terada Y, et al. Use of rifabutin to treat tuberculosis in a cardiac transplant recipient: A case report. Int J Clin Pharmacol Ther, 2018,56(4):184-188. doi: 10.5414/CP203137.
doi: 10.5414/CP203137 URL pmid: 29350178 |
[55] |
Cruz AT, Starke JR. Monitoring Treatment of Childhood Tuberculosis and the Role of Therapeutic Drug Monitoring. Indian J Pediatr, 2019,86(8):732-739. doi: 10.1007/s12098-019-02882-y.
doi: 10.1007/s12098-019-02882-y URL pmid: 30815840 |
[56] |
Garcia-Prats AJ, Schaaf HS, Draper HR, et al. Pharmacokinetics, optimal dosing, and safety of linezolid in children with multidrug-resistant tuberculosis: Combined data from two prospective observational studies. PLoS Med, 2019,16(4):e1002789. doi: 10.1371/journal.pmed.1002789.
doi: 10.1371/journal.pmed.1002789 URL pmid: 31039153 |
[57] |
Martial LC, Kerkhoff J, Martinez N, et al. Evaluation of dried blood spot sampling for pharmacokinetic research and therapeutic drug monitoring of anti-tuberculosis drugs in children. Int J Antimicrob Agents, 2018,52(1):109-113. doi: 10.1016/j.ijantimicag.2018.04.020.
doi: 10.1016/j.ijantimicag.2018.04.020 URL pmid: 29751121 |
[58] |
Panjasawatwong N, Wattanakul T, Hoglund RM, et al. Popu-lation pharmacokinetic properties of antituberculosis drugs in vietnamese children with tuberculous meningitis. Antimicrob Agents Chemother, 2020,65(1):e00487-20. doi: 10.1128/AAC.00487-20.
doi: 10.1128/AAC.00487-20 URL pmid: 33139294 |
[1] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
[2] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
[3] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
[4] | 李敏, 姚宇珊, 乔海霞, 雷红. 肺结核与肠道菌群的相关性及治疗策略[J]. 中国防痨杂志, 2025, 47(4): 520-526. |
[5] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
[6] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
[7] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
[8] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
[9] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
[10] | 宋云林, 布祖克拉·阿布都艾尼, 王桂荣, 张继园, 鲁晓擘. 钙结合蛋白S100A12与中性粒细胞胞外诱捕网形成在重症肺结核患者肺损伤中作用机制研究进展[J]. 中国防痨杂志, 2025, 47(4): 513-519. |
[11] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
[12] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
[13] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[14] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[15] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||