中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (5): 409-417.doi: 10.3969/j.issn.1000-6621.2020.05.001
• 指南·规范·共识 • 下一篇
首都医科大学附属北京胸科医院, 中国防痨协会临床试验专业分会, 《中国防痨杂志》编辑委员会
收稿日期:2020-02-29
出版日期:2020-05-10
发布日期:2020-05-08
基金资助:Beijing Chest Hospital,Capital Medical University, Clinical Trial Branch of the Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis
Received:2020-02-29
Online:2020-05-10
Published:2020-05-08
摘要:
氯法齐明作为治疗耐药结核病的核心药物之一,由于缺乏规范性指导意见,中国防痨协会临床试验专业分会与《中国防痨杂志》编辑委员会组织相关专家制定本指南。本指南介绍了氯法齐明的分子结构与作用机制、药效学与药代动力学、耐药机制、不同类型人群的临床应用、适应证与禁忌证、剂量用法、化疗方案的制订,以及不良反应和临床应用注意事项等内容,以期对临床规范使用氯法齐明起到指导性作用。
首都医科大学附属北京胸科医院, 中国防痨协会临床试验专业分会, 《中国防痨杂志》编辑委员会. 氯法齐明治疗结核病的临床应用指南[J]. 中国防痨杂志, 2020, 42(5): 409-417. doi: 10.3969/j.issn.1000-6621.2020.05.001
Beijing Chest Hospital,Capital Medical University, Clinical Trial Branch of the Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Guideline for clinical application of clofazimine in the treatment of tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(5): 409-417. doi: 10.3969/j.issn.1000-6621.2020.05.001
| [1] | World Health Organization . Global tuberculosis report. Geneva: World Health Organization, 2019. |
| [2] |
Chahine EB, Karaoui LR, Mansour H . Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann Pharmacother, 2014,48(1):107-115.
doi: 10.1177/1060028013504087 URL |
| [3] |
Wong EB, Cohen KA, Bishai WR . Rising to the challenge: new therapies for tuberculosis. Trends Microbiol, 2013,21(9):493-501.
doi: 10.1016/j.tim.2013.05.002 URL pmid: 23764389 |
| [4] |
Palmero D, González Montaner P, Cufré M , et al. First series of patients with XDR and pre-XDR TB treated with regimens that included meropenen-clavulanate in Argentina. Arch Bronconeumol, 2015,51(10):e49-52.
doi: 10.1016/j.arbres.2015.03.012 URL pmid: 26026689 |
| [5] |
Szumowski JD, Lynch JB . Profile of delamanid for the treatment of multidrug-resistant tuberculosis. Drug Des Devel Ther, 2015,9:677-682.
doi: 10.2147/DDDT.S60923 URL pmid: 25678771 |
| [6] |
Barry VC, Belton JG, Conalty ML , et al. A new series of phenazines (rimino-compounds) with high antituberculosis activity. Nature, 1957,179(4568):1013-1015.
doi: 10.1038/1791013a0 URL pmid: 13430770 |
| [7] |
Cholo MC, Steel HC, Fourie PB , et al. Clofazimine: current status and future prospects. J Antimicrob Chemother, 2012,67(2):290-298.
doi: 10.1093/jac/dkr444 URL pmid: 22020137 |
| [8] |
Dey T, Brigden G, Cox H , et al. Outcomes of clofazimine for the treatment of drug-resistant tuberculosis: a systematic review and meta-analysis. J Antimicrob Chemother, 2013,68(2):284-293.
doi: 10.1093/jac/dks389 URL pmid: 23054996 |
| [9] |
Singh S, Bouzinbi N, Chaturvedi V , et al. In vitro evaluation of a new drug combination against clinical isolates belonging to the Mycobacterium abscessus complex. Clin Microbiol Infect, 2014,20(12):O1124-1127.
doi: 10.1111/1469-0691.12780 URL pmid: 25185732 |
| [10] |
Bennie CJ, To JL, Martin PA , et al. In vitro interaction of some drug combinations to inhibit rapidly growing mycobacteria isolates from cats and dogs and these isolates’ susceptibility to cefovecin and clofazimine. Aust Vet J, 2015,93(1/2):40-45.
doi: 10.1111/avj.12279 URL pmid: 25622709 |
| [11] |
Ferro BE, Meletiadis J, Wattenberg M , et al. Clofazimine Prevents the Regrowth of Mycobacterium abscessus and Mycobacterium avium Type Strains Exposed to Amikacin and Clarithromycin. Antimicrob Agents Chemother, 2016,60(2):1097-1105.
doi: 10.1128/AAC.02615-15 URL pmid: 26643335 |
| [12] |
Obregón-Henao A, Arnett KA, Henao-Tamayo M , et al. Susceptibility of Mycobacterium abscessus to antimycobacterial drugs in preclinical models. Antimicrob Agents Chemother, 2015,59(11):6904-6912.
doi: 10.1128/AAC.00459-15 URL pmid: 26303795 |
| [13] |
Roy K, Sil A, Das NK , et al. Effectiveness and safety of clofazimine and pentoxifylline in type 2 lepra reaction: a double-blind, randomized, controlled study. Int J Dermatol, 2015,54(11):1325-1332.
doi: 10.1111/ijd.12793 URL pmid: 26094723 |
| [14] |
Yano T, Kassovska-Bratinova S, Teh JS , et al. Reduction of clofazimine by mycobacterial type 2 NADH:quinone oxidoreductase: a pathway for the generation of bactericidal levels of reactive oxygen species. J Biol Chem, 2011,286(12):10276-10287.
doi: 10.1074/jbc.M110.200501 URL pmid: 21193400 |
| [15] |
Nunn AJ, Rusen ID, Van Deun A , et al. Evaluation of a standardized treatment regimen of anti-tuberculosis drugs for patients with multi-drug-resistant tuberculosis (STREAM): study protocol for a randomized controlled trial. Trials, 2014,15:353.
doi: 10.1186/1745-6215-15-353 URL pmid: 25199531 |
| [16] |
Moodley R, Godec TR, STREAM Trial Team . Short-course treatment for multidrug-resistant tuberculosis: the STREAM trials. Eur Respir Rev, 2016,25(139):29-35.
doi: 10.1183/16000617.0080-2015 URL pmid: 26929418 |
| [17] | World Health Organization . WHO treatment guidelines for drug-resistant tuberculosis, 2016 update. Geneva: World Health Organization, 2016. |
| [18] | World Health Organization . WHO consolidated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
| [19] |
Van Rensburg CE, Jooné GK, O’Sullivan JF , et al. Antimicrobial activities of clofazimine and B669 are mediated by lysophospholipids. Antimicrob Agents Chemother, 1992,36(12):2729-2735.
doi: 10.1128/aac.36.12.2729 URL pmid: 1482140 |
| [20] |
Krajewska MM, Anderson R . An in vitro comparison of the effects of the prooxidative riminophenazines clofazimine and B669 on neutrophil phospholipase A2 activity and superoxide generation. J Infect Dis, 1993,167(4):899-904.
doi: 10.1093/infdis/167.4.899 URL pmid: 8383722 |
| [21] |
Gler MT, Macalintal LE, Raymond L , et al. Multidrug-resistant tuberculosis among previously treated patients in the Philippines. Int J Tuberc Lung Dis, 2011,15(5):652-656.
doi: 10.5588/ijtld.10.0400 URL pmid: 21756517 |
| [22] |
Rojo A, Ibáñez MA, Alonso CA , et al. Multidrug-resistant tuberculosis presenting as a solitary splenic mass in an immunocompetent patient. Diagn Microbiol Infect Dis, 2011,70(4):522-524.
doi: 10.1016/j.diagmicrobio.2011.03.013 URL pmid: 21767708 |
| [23] | 中华医学会结核病学分会. 中国耐多药和利福平耐药结核病治疗专家共识(2019年版). 中华结核和呼吸杂志, 2019,42(10):733-749. |
| [24] |
Oliva B, O’Neill AJ, Miller K , et al. Anti-staphylococcal activity and mode of action of clofazimine. J Antimicrob Chemother, 2004,53(3):435-440.
doi: 10.1093/jac/dkh114 URL pmid: 14762055 |
| [25] |
Parak RB, Wadee AA . The synergistic effects of gamma interferon and clofazimine on phagocyte function: restoration of inhibition due to a 25 kilodalton fraction from Mycobacterium tuberculosis. Biotherapy, 1991,3(3):265-272.
doi: 10.1007/BF02171691 URL pmid: 1906725 |
| [26] |
Wadee AA, Anderson R, Rabson AR . Clofazimine reverses the inhibitory effect of Mycobacterium tuberculosis derived factors on phagocyte intracellular killing mechanisms. J Antimicrob Chemother, 1988,21(1):65-74.
doi: 10.1093/jac/21.1.65 URL pmid: 3128522 |
| [27] |
Shen GH, Wu BD, Hu ST , et al. High efficacy of clofazimine and its synergistic effect with amikacin against rapidly growing mycobacteria. Int J Antimicrob Agents, 2010,35(4):400-404.
doi: 10.1016/j.ijantimicag.2009.12.008 URL pmid: 20138481 |
| [28] |
van Rensburg CE, Jooné GK, Sirgel FA , et al. In vitro investigation of the antimicrobial activities of novel tetramethylpipe-ridine-substituted phenazines against Mycobacterium tuberculosis. Chemotherapy, 2000,46(1):43-48.
doi: 10.1159/000007255 URL pmid: 10601797 |
| [29] |
Jagannath C, Reddy MV, Kailasam S , et al. Chemotherapeutic activity of clofazimine and its analogues against Mycobacterium tuberculosis. In vitro, intracellular, and in vivo studies. Am J Respir Crit Care Med, 1995,151(4):1083-1086.
doi: 10.1164/ajrccm/151.4.1083 URL pmid: 7697235 |
| [30] |
Reddy VM, O’Sullivan JF, Gangadharam PR . Antimycobacterial activities of riminophenazines. J Antimicrob Chemother, 1999,43(5):615-623.
doi: 10.1093/jac/43.5.615 URL pmid: 10382882 |
| [31] |
Geerligs WA, Van Altena R, De Lange WCM , et al. Multidrug-resistant tuberculosis: long-term treatment outcome in the Netherlands. Int J Tuberc Lung Dis, 2000,4(8):758-764.
URL pmid: 10949328 |
| [32] |
Cavanaugh JS, Jou R, Wu MH , et al. Susceptibilities of MDR Mycobacterium tuberculosis isolates to unconventional drugs compared with their reported pharmacokinetic/pharmacodynamic parameters. J Antimicrob Chemother, 2017,72(6):1678-1687.
doi: 10.1093/jac/dkx022 URL pmid: 28333192 |
| [33] |
Mothiba MT, Anderson R, Fourie B , et al. Effects of clofazimine on planktonic and biofilm growth of Mycobacterium tuberculosis and Mycobacterium smegmatis. J Glob Antimicrob Resist, 2015,3(1):13-18.
doi: 10.1016/j.jgar.2014.12.001 URL pmid: 27873644 |
| [34] |
Irwin SM, Gruppo V, Brooks E , et al. Limited activity of clofazimine as a single drug in a mouse model of tuberculosis exhibiting caseous necrotic granulomas. Antimicrob Agents Chemother, 2014,58(7):4026-4034.
doi: 10.1128/AAC.02565-14 URL pmid: 24798275 |
| [35] |
Zhang Z, Li T, Qu G , et al. In vitro synergistic activity of clofazimine and other antituberculous drugs against multidrug-resistant Mycobacterium tuberculosis isolates. Int J Antimicrob Agents, 2015,45(1):71-75.
doi: 10.1016/j.ijantimicag.2014.09.012 URL pmid: 25459737 |
| [36] | 陆宇, 王彬, 赵伟杰 , 等. 氯法齐明与其他抗结核药物联用对结核分枝杆菌的作用. 中华结核和呼吸杂志, 2010,33(9):675-678. |
| [37] |
Valetti S, Xia X, Costa-Gouveia J , et al. Clofazimine encapsulation in nanoporous silica particles for the oral treatment of antibiotic-resistant Mycobacterium tuberculosis infections. Nanomedicine (Lond), 2017,12(8):831-844.
doi: 10.2217/nnm-2016-0364 URL pmid: 28338408 |
| [38] |
Almeida Da Silva PE, Palomino JC . Molecular basis and mecha-nisms of drug resistance in Mycobacterium tuberculosis: classical and new drugs. J Antimicrob Chemother, 2011,66(7):1417-1430.
doi: 10.1093/jac/dkr173 URL pmid: 21558086 |
| [39] |
Maartens G, Brill MJE, Pandie M , et al. Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis. Int J Tuberc Lung Dis, 2018,22(1):26-29.
doi: 10.5588/ijtld.17.0615 URL pmid: 29145924 |
| [40] |
Tyagi S, Ammerman NC, Li SY , et al. Clofazimine shortens the duration of the first-line treatment regimen for experimental chemotherapy of tuberculosis. Proc Natl Acad Sci U S A, 2015,112(3):869-874.
doi: 10.1073/pnas.1416951112 URL pmid: 25561537 |
| [41] |
Lee BY, Clemens DL, Silva A , et al. Ultra-rapid near universal TB drug regimen identified via parabolic response surface platform cures mice of both conventional and high susceptibility. PLoS One, 2018,13(11):e207469.
doi: 10.1371/journal.pone.0207469 URL pmid: 30427938 |
| [42] |
Cholo MC, Mothiba MT, Fourie B , et al. Mechanisms of action and therapeutic efficacies of the lipophilic antimycobacterial agents clofazimine and bedaquiline. J Antimicrob Chemother, 2017,72(2):338-353.
doi: 10.1093/jac/dkw426 URL pmid: 27798208 |
| [43] |
Swanson RV, Adamson J, Moodley C , et al. Pharmacokinetics and pharmacodynamics of clofazimine in a mouse model of tuberculosis. Antimicrob Agents Chemother, 2015,59(6):3042-3051.
doi: 10.1128/AAC.00260-15 URL pmid: 25753644 |
| [44] |
Schaad-Lanyi Z, Dieterle W, Dubois JP , et al. Pharmacokinetics of clofazimine in healthy volunteers. Int J Lepr Other Mycobact Dis, 1987,55(1):9-15.
URL pmid: 3559339 |
| [45] |
左小淑, 陆宇 . 氯苯吩嗪抗结核作用的研究进展. 中国防痨杂志, 2015,37(1):90-94.
doi: 10.3969/j.issn.1000-6621.2015.01.017 URL |
| [46] |
Jadhav MV, Sathe AG, Deore SS , et al. Tissue concentration, systemic distribution and toxicity of clofazimine--an autopsy study. Indian J Pathol Microbiol, 2004,47(2):281-283.
URL pmid: 16295502 |
| [47] |
Xu J, Lu Y, Fu L , et al. In vitro and in vivo activity of clofazi-mine against Mycobacterium tuberculosis persisters. Int J Tuberc Lung Dis, 2012,16(8):1119-1125.
doi: 10.5588/ijtld.11.0752 URL pmid: 22691726 |
| [48] |
Prideaux B, Via LE, Zimmerman MD , et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat Med, 2015,21(10):1223-1227.
doi: 10.1038/nm.3937 URL pmid: 26343800 |
| [49] |
Swanson RV, Ammerman NC, Ngcobo B , et al. Clofazimine contributes sustained antimicrobial activity after treatment cessation in a mouse model of tuberculosis chemotherapy. Antimicrob Agents Chemother, 2016,60(5):2864-2869.
doi: 10.1128/AAC.00177-16 URL pmid: 26926638 |
| [50] |
Sangana R, Gu H, Chun DY , et al. Evaluation of clinical drug interaction potential of clofazimine using static and dynamic modeling approaches. Drug Metab Dispos, 2018,46(1):26-32.
doi: 10.1124/dmd.117.077834 URL pmid: 29038231 |
| [51] |
Pang Y, Zong Z, Huo F , et al. In vitro drug susceptibility of bedaquiline, delamanid, linezolid, clofazimine, moxifloxacin, and gatifloxacin against extensively drug-resistant tuberculosis in Beijing, China. Antimicrob Agents Chemother, 2017,61(10):e00900-17.
doi: 10.1128/AAC.00900-17 URL pmid: 28739779 |
| [52] |
Somoskovi A, Bruderer V, Hömke R , et al. A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. Eur Respir J, 2015,45(2):554-557.
doi: 10.1183/09031936.00142914 URL pmid: 25359333 |
| [53] |
Hartkoorn RC, Uplekar S, Cole ST . Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2014,58(5):2979-2981.
doi: 10.1128/AAC.00037-14 URL pmid: 24590481 |
| [54] |
Zhang S, Chen J, Cui P , et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis. J Antimicrob Chemother, 2015,70(9):2507-2510.
doi: 10.1093/jac/dkv150 URL pmid: 26045528 |
| [55] |
Bloemberg GV, Keller PM, Stucki D , et al. Acquired resis-tance to bedaquiline and delamanid in therapy for tuberculosis. N Engl J Med, 2015,373(20):1986-1988.
doi: 10.1056/NEJMc1505196 URL pmid: 26559594 |
| [56] |
Pym AS, Diacon AH, Tang SJ , et al. Bedaquiline in the treatment of multidrug- and extensively drug-resistant tuberculosis. Eur Respir J, 2016,47(2):564-574.
doi: 10.1183/13993003.00724-2015 URL pmid: 26647431 |
| [57] |
Villellas C, Coeck N, Meehan CJ , et al. Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or beda-quiline. J Antimicrob Chemother, 2017,72(3):684-690.
doi: 10.1093/jac/dkw502 URL pmid: 28031270 |
| [58] |
Tang S, Yao L, Hao X , et al. Clofazimine for the treatment of multidrug-resistant tuberculosis: prospective, multicenter, randomized controlled study in China. Clin Infect Dis, 2015,60(9):1361-1367.
doi: 10.1093/cid/civ027 URL pmid: 25605283 |
| [59] | 王洪军 . 氯法齐明治疗耐多药结核病92例. 医学综述, 2012,18(19):3289-3291. |
| [60] | 陈瑛, 刘新, 张晓 . 氯法齐明为主药方案治疗广泛耐多药肺结核临床疗效观察. 中华实用诊断与治疗杂志, 2009,23(9):898-899. |
| [61] | 石海萍, 韩莉 . 含氯法齐明方案治疗耐多药肺结核近期疗效观察. 陕西医学杂志, 2015,44(5):605-607. |
| [62] |
Du Y, Qiu C, Chen X , et al. Treatment outcome of a shorter regimen containing clofazimine for multidrug-resistant tuberculosis: a randomized control trial in China. Clin Infect Dis, 2019. DOI: 10.1093/cid/ciz915.[Online ahead of print].
doi: 10.1093/cid/ciz915 URL pmid: 31549147 |
| [63] |
Duan H, Chen X, Li Z , et al. Clofazimine improves clinical outcomes in multidrug-resistant tuberculosis: a randomized controlled trial. Clin Microbiol Infect, 2019,25(2):190-195.
doi: 10.1016/j.cmi.2018.07.012 URL pmid: 30036672 |
| [64] | Wang Q, Pang Y, Jing W , et al. Clofazimine for treatment of extensively drug-resistant pulmonary tuberculosis in China. Antimicrob Agents Chemother, 2018,62(4):e02149-17. |
| [65] |
Aung KJ, Van Deun A, Declercq E , et al. Successful ‘9-month Bangladesh regimen’ for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung Dis, 2014,18(10):1180-1187.
doi: 10.5588/ijtld.14.0100 URL pmid: 25216831 |
| [66] |
Van Deun A, Maug AK, Salim MA , et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med, 2010,182(5):684-692.
doi: 10.1164/rccm.201001-0077OC URL pmid: 20442432 |
| [67] |
Trébucq A, Schwoebel V, Kashongwe Z , et al. Treatment outcome with a short multidrug-resistant tuberculosis regimen in nine African countries. Int J Tuberc Lung Dis, 2018,22(1):17-25.
doi: 10.5588/ijtld.17.0498 URL pmid: 29149917 |
| [68] |
Kuaban C, Noeske J, Rieder HL , et al. High effectiveness of a 12-month regimen for MDR-TB patients in Cameroon. Int J Tuberc Lung Dis, 2015,19(5):517-524.
doi: 10.5588/ijtld.14.0535 URL pmid: 25868018 |
| [69] |
von der Lippe B, Sandven P, Brubakk O . Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB)--a report of ten cases. J Infect, 2006,52(2):92-96.
doi: 10.1016/j.jinf.2005.04.007 URL pmid: 15907341 |
| [70] |
Piubello A, Harouna SH, Souleymane MB , et al. High cure rate with standardised short-course multidrug-resistant tuberculosis treatment in Niger: no relapses. Int J Tuberc Lung Dis, 2014,18(10):1188-1194.
doi: 10.5588/ijtld.13.0075 URL pmid: 25216832 |
| [71] |
Collaborative Group for the Meta-Analysis of Individual Patient Data in MDR-TB treatment—2017, Ahmad N, Ahuja SD , et al. Treatment correlates of successful outcomes in pulmonary multidrug-resistant tuberculosis: an individual patient data meta-analysis. Lancet, 2018,392(10150):821-834.
doi: 10.1016/S0140-6736(18)31644-1 URL pmid: 30215381 |
| [72] |
Padayatchi N, Gopal M, Naidoo R , et al. Clofazimine in the treatment of extensively drug-resistant tuberculosis with HIV coinfection in South Africa: a retrospective cohort study. J Antimicrob Chemother, 2014,69(11):3103-3107.
doi: 10.1093/jac/dku235 URL pmid: 24986495 |
| [73] |
van Altena R, de Vries G, Haar CH , et al. Highly successful treatment outcome of multidrug-resistant tuberculosis in the Netherlands, 2000—2009. Int J Tuberc Lung Dis, 2015,19(4):406-412.
doi: 10.5588/ijtld.14.0838 URL pmid: 25859995 |
| [74] |
Singh DK, Dwivedi VP, Ranganathan A , et al. Blockade of the Kv1.3 K+ Channel Enhances BCG Vaccine Efficacy by Expanding Central Memory T Lymphocytes . J Infect Dis, 2016,214(9):1456-1464.
doi: 10.1093/infdis/jiw395 URL pmid: 27571906 |
| [75] |
Walker NF, Scriven J, Meintjes G , et al. Immune reconstitution inflammatory syndrome in HIV-infected patients. HIV AIDS (Auckl), 2015,7:49-64.
doi: 10.2147/HIV.S42328 URL pmid: 25709503 |
| [76] |
Singh DK, Dwivedi VP, Ranganathan A , et al. Reply to Levis and Rendini. J Infect Dis, 2017,215(9):1488-1489.
doi: 10.1093/infdis/jix084 URL pmid: 28199694 |
| [77] |
Holdiness MR . Clinical pharmacokinetics of clofazimine. A review. Clin Pharmacokinet, 1989,16(2):74-85.
doi: 10.2165/00003088-198916020-00002 URL pmid: 2656045 |
| [78] |
Baijnath S, Naiker S, Shobo A , et al. Evidence for the pre-sence of clofazimine and its distribution in the healthy mouse brain. J Mol Histol, 2015,46(4/5):439-442.
doi: 10.1007/s10735-015-9634-3 URL pmid: 26208572 |
| [79] | 中华医学会结核病学分会, 抗结核药物超说明书用法专家共识编写组. 抗结核药物超说明书用法专家共识. 中华结核和呼吸杂志, 2018,41(6):447-460. |
| [80] |
Yoon HY, Jo KW, Nam GB , et al. Clinical significance of QT-prolonging drug use in patients with MDR-TB or NTM disease. Int J Tuberc Lung Dis, 2017,21(9):996-1001.
doi: 10.5588/ijtld.17.0174 URL pmid: 28826448 |
| [81] |
Huynh J, Marais BJ . Multidrug-resistant tuberculosis infection and disease in children: a review of new and repurposed drugs. Ther Adv Infect Dis, 2019,6:2049936119864737.
doi: 10.1177/2049936119864737 URL pmid: 31367376 |
| [82] |
Harouna SH, Ortuno-Gutierrez N, Souleymane MB , et al. Short-course treatment outcomes and adverse events in adults and children-adolescents with MDR-TB in Niger. Int J Tuberc Lung Dis, 2019,23(5):625-630.
doi: 10.5588/ijtld.17.0871 URL pmid: 31097073 |
| [83] |
Harausz EP, Garcia-Prats AJ, Law S , et al. Treatment and outcomes in children with multidrug-resistant tuberculosis: A systematic review and individual patient data meta-analysis. PLoS Med, 2018,15(7):e1002591.
doi: 10.1371/journal.pmed.1002591 URL pmid: 29995958 |
| [84] |
Tabarsi P, Moradi A, Baghaei P , et al. Standardised second-line treatment of multidrug-resistant tuberculosis during pregnancy. Int J Tuberc Lung Dis, 2011,15(4):547-550.
doi: 10.5588/ijtld.10.0140 URL pmid: 21396217 |
| [85] | 中国防痨协会. 耐药结核病化学治疗指南(2019年简版). 中国防痨杂志, 2019,41(10):1025-1073. |
| [86] |
Lange C, Dheda K, Chesov D , et al. Management of drug-resistant tuberculosis. Lancet, 2019,394(10202):953-966.
doi: 10.1016/S0140-6736(19)31882-3 URL pmid: 31526739 |
| [87] |
Van Rensburg CE, Anderson R, O’Sullivan JF . Riminophenazine compounds: pharmacology and anti-neoplastic potential. Crit Rev Oncol Hematol, 1997,25(1):55-67.
doi: 10.1016/s1040-8428(96)00229-6 URL pmid: 9134311 |
| [88] |
Peters JH, Gordon GR, Murray JJ , et al. Mutagenic activity of antileprosy drugs and their derivatives. Int J Lepr Other Mycobact Dis, 1983,51(1):45-53.
URL pmid: 6683259 |
| [89] |
Hameed A, Beach FX, Kennedy RH , et al. A case of clofazimine enteropathy. Int J Clin Pract, 1998,52(6):439-440.
URL pmid: 9894387 |
| [90] |
Gopal M, Padayatchi N, Metcalfe JZ , et al. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis. Int J Tuberc Lung Dis, 2013,17(8):1001-1007.
doi: 10.5588/ijtld.12.0144 URL pmid: 23541151 |
| [91] |
Chang KC, Yew WW, Tam CM , et al. WHO group 5 drugs and difficult multidrug-resistant tuberculosis: a systematic review with cohort analysis and meta-analysis. Antimicrob Agents Chemother, 2013,57(9):4097-4104.
doi: 10.1128/AAC.00120-13 URL pmid: 23774431 |
| [92] | World Health Organization . Companion handbook to the WHO guidelines for the programmatic management of drug-resistant tuberculosis. Geneva:World Health Organization, 2014. |
| [93] | 中国防痨协会. 耐药结核病化学治疗指南(2019年). 北京:人民卫生出版社, 2019. |
| [94] |
Balakrishnan S, Desikan KV, Ramu G . Quantitative estimation of clofazimine in tissue. Lepr India, 1976,48(4 Suppl):732-738.
URL pmid: 1026811 |
| [1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
| [2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
| [3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
| [4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
| [5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
| [6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
| [7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
| [8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
| [9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
| [10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
| [11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
| [12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
| [13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
| [14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
| [15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010202007215号
ip访问总数: ip当日访问总数: 当前在线人数:
本作品遵循Creative Commons Attribution 3.0 License授权许可