中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (4): 398-403.doi: 10.3969/j.issn.1000-6621.2020.04.018
收稿日期:2019-12-10
									
				
									
				
									
				
											出版日期:2020-04-10
									
				
											发布日期:2020-04-07
									
			通信作者:
					宋兴华
											E-mail:songxinghua19@163.com
												基金资助:
        
               		XIANG Hai-bin,LIANG Qiu-zhen,LI Xin-xia,SONG Xing-hua( )
)
			  
			
			
			
                
        
    
Received:2019-12-10
									
				
									
				
									
				
											Online:2020-04-10
									
				
											Published:2020-04-07
									
			Contact:
					Xing-hua SONG   
											E-mail:songxinghua19@163.com
												摘要:
结核分枝杆菌作为一种巨噬细胞胞内寄生菌,传统药物治疗存在治疗周期长、生物利用度低、毒性大甚至耐药性增加等局限性问题。抗结核纳米递药系统作为一种抗结核新剂型,可将经济廉价的药物通过主动或被动方式递送到巨噬细胞内,以杀死正在复制或潜伏期的结核分枝杆菌。在此框架下,笔者探讨了抗结核纳米递药系统对巨噬细胞主被动靶向机制,及用于组装纳米递药系统的先进材料。此外,总结了影响靶向递送效率的因素及面临的挑战。
向海滨,梁求真,李新霞,宋兴华. 巨噬细胞的抗结核纳米递药系统的应用进展[J]. 中国防痨杂志, 2020, 42(4): 398-403. doi: 10.3969/j.issn.1000-6621.2020.04.018
XIANG Hai-bin,LIANG Qiu-zhen,LI Xin-xia,SONG Xing-hua. Advances in the application of anti-tuberculosis nanoscale drug delivery system targeting macrophages[J]. Chinese Journal of Antituberculosis, 2020, 42(4): 398-403. doi: 10.3969/j.issn.1000-6621.2020.04.018
 
												
												表1
不同分类递送药物纳米载体的优缺点
| 分类 | 纳米载体 | 优点 | 缺点 | 
|---|---|---|---|
| 聚合物 | 明胶、聚乳酸-羟基乙酸共聚物、聚乳酸、聚酸酐、聚丙烯酸酯、树枝状大分子 | 工艺简单;理化特性可控;生物稳定性高;多途径给药 | 体内降解速度慢;易蓄积;有机溶剂残留毒性 | 
| 脂质体 | 长循环脂质体、糖基脂质体、pH敏感性脂质体 | 技术成熟;无有机溶剂制备;生物降解性及相容性高 | 物理稳定性差;半衰期短;药物负载能力低 | 
| 多糖 | 藻酸盐、直链淀粉、壳聚糖、透明质酸、环糊精 | 本质为碳水化合物;毒性极低;廉价;生物相容性高;生物可降解性好 | 载药量和释放效率低 | 
| 碳纳米 | 石墨、氧化石墨烯、碳纳米管、富勒烯和金刚石 | 载体表面可诱捕细菌且存在大量官能团;易被配体修饰 | 生物利用度低;生物稳定性差;急性炎症反应和进行性纤维化等毒性 | 
| 金属载体 | 银纳米颗粒、镓纳米颗粒、金纳米颗粒、铁纳米颗粒 | 可干扰MTB代谢;具有抗菌活性 | 生物利用度低;时间相关的细胞毒性;重金属中毒 | 
 
												
												表2
巨噬细胞主动靶向的纳米递药系统的相关报道
| 文献发 表年份 | 配体 | 纳米载体 | 药物 | 粒径(nm) | 电位(mV) | 包封率(%) | 载药率(%) | 靶向细胞 | 
|---|---|---|---|---|---|---|---|---|
| 2019 | 甘露糖 | 氧化石墨烯 | 利福平 | 50~300 | -25 | -b | -b | 恒河猴巨噬细胞[ | 
| 2018 | 甘露糖 | 硬脂胺-脂质体 | 利福平 | 160~250 | 25.7 | 95.5 | 3.5 | 人THP1巨噬细胞系[ | 
| 2018 | 甘露糖 | 硬脂胺-脂质体 | 异烟肼 | 452~530 | 26.9~38.6 | 34.0~50.2 | 1.6~2.3 | 人THP1巨噬细胞系[ | 
| 2018 | β-葡聚糖 | PLGA | 利福平 | 283.1 | -28.6 | -b | 1.1 | 人THP1巨噬细胞系[ | 
| 2017 | 聚乙二醇 | PLGA | 莫西沙星 | 112.16 | 4.76 | 76.55 | 86.75 | 巨噬细胞[ | 
| 2017 | 甘露糖 | 脂质体 | 利福平 | 720~1380 | 44.4~63.7a | 25.5~44.3 | 6.75~14.53 | 鼠J774巨噬细胞系[ | 
| 2016 | 甘露糖 | 硬脂胺-脂质体 | 利福布汀 | 213 | 37.6 | 90 | -b | 鼠RAW264.7细胞系[ | 
| 2015 | 甘露糖 | 阳离子脂质 | 利福平 | 157.4 | 34.3 | 91.6 | 38.4~42.2 | 鼠肺泡NR8383细胞[ | 
| 2015 | 霉菌酸 | PLGA | 异烟肼 | 253~929 | 23.3~21.4a | -b | -b | 鼠骨髓巨噬细胞[ | 
| 2015 | 透明质酸 | 生育酚琥珀酸酯胶束 | 利福平 | 238~299 | 23.7~30.9a | -b | 70.01~79.09 | 鼠肺泡MH-S巨噬细胞[ | 
| 2011 | 甘露糖 | 明胶 | 异烟肼 | 343 | 13.17 | 43.2 | -b | 鼠J774巨噬细胞系[ | 
| 2010 | 乳糖 | PLGA | 利福平 | 184 | -3.2 | 42.2 | 78.4±1.14 | 肺泡巨噬细胞[ | 
| [1] | World Health Organization. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. | 
| [2] | Kalscheuer R, Palacios A, Anso I , et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J, 2019,476(14):1995-2016. | 
| [3] | Hmama Z, Pena-Diaz S, Joseph S , et al. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev, 2015,264(1):220-232. | 
| [4] | Mitchell G, Chen C, Portnoy DA . Strategies Used by Bacteria to Grow in Macrophages. Microbiol Spectr, 2016,4(3). doi: 10.1128/microbiolspec.MCHD-0012-2015. | 
| [5] | Cardona P, Cardona PJ . Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol, 2019,10:2139. | 
| [6] | Chai Q, Lu Z, Liu CH . Host defense mechanisms against Mycobacterium tuberculosis (Review). Cell Mol Life Sci, 2019. [Epub ahead of print] | 
| [7] | de Martino M, Lodi L, Galli L , et al. Immune Response to Mycobacterium tuberculosis: A Narrative Review (Review). Front Pediatr, 2019,7:350. | 
| [8] | Weiss G, Schaible UE . Macrophage defense mechanisms against intracellular bacteria. Immunol Rev, 2015,264(1):182-203. | 
| [9] | Singh R, Dwivedi SP, Gaharwar US , et al. Recent updates on drug resistance in Mycobacterium tuberculosis (Review). J Appl Microbiol, 2019. [Epub ahead of print] | 
| [10] | Lange C, Dheda K, Chesov D , et al. Management of drug-resistant tuberculosis. Lancet, 2019,394(10202):953-966. | 
| [11] | Delogu G, Goletti D . The spectrum of tuberculosis infection: new perspectives in the era of biologics. J Rheumatol Suppl, 2014,91:11-16. | 
| [12] | Costa-Gouveia J, Ainsa JA, Brodin P , et al. How can nano-particles contribute to antituberculosis therapy? Drug Discov Today, 2017,22(3):600-607. | 
| [13] | Cheng H, Chawla A, Yang Y , et al. Development of nanomaterials for bone-targeted drug delivery. Drug Discov Today, 2017,22(9):1336-1350. | 
| [14] | Sahay G, Alakhova DY, Kabanov AV . Endocytosis of nanomedicines. J Control Release, 2010,145(3):182-195. | 
| [15] | Patel S, Kim J, Herrera M , et al. Brief update on endocytosis of nanomedicines. Adv Drug Deliv Rev, 2019,144:90-111. | 
| [16] | Mir M, Ahmed N, Rehman AU . Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Bioin-terfaces, 2017,159:217-231. | 
| [17] | Ding D, Zhu Q . Recent advances of PLGA micro/nanoparticles for the delivery of biomacromolecular therapeutics. Mater Sci Eng C Mater Biol Appl, 2018,92:1041-1060. | 
| [18] | Xu Y, Kim CS, Saylor DM , et al. Polymer degradation and drug delivery in PLGA-based drug-polymer applications: A review of experiments and theories. J Biomed Mater Res B Appl Biomater, 2017,105(6):1692-1716. | 
| [19] | Pandey R, Zahoor A, Sharma S , et al. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb), 2003,83(6):373-378. | 
| [20] | Sharma A, Sharma S, Khuller GK . Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother, 2004,54(4):761-766. | 
| [21] | Marcianes P, Negro S, Garcia-Garcia L , et al. Surface-modified gatifloxacin nanoparticles with potential for treating central nervous system tuberculosis. Int J Nanomedicine, 2017,12:1959-1968. | 
| [22] | Mignani S, Tripathi RP, Chen L , et al. New Ways to Treat Tuberculosis Using Dendrimers as Nanocarriers. Pharmaceutics, 2018, 10(3). pii: E105. | 
| [23] | Bellini RG, Guimaraes AP, Pacheco MA , et al. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J Mol Graph Model, 2015,60:34-42. | 
| [24] | Dineshkumar P, Panneerselvam T, Brundavani KD , et al. Formulation of Rifampicin Loaded PEGylated 5.0G EDA-PAMAM Dendrimers as Effective Long-Duration Release Drug Carriers. Current Drug Therapy, 2017,12(2):115-126. | 
| [25] | Klemens SP, Cynamon MH, Swenson CE , et al. Liposome-encapsulated-gentamicin therapy of Mycobacterium avium complex infection in beige mice. Antimicrob Agents Chemother, 1990,34(6):967-970. | 
| [26] | Merchant Z, Buckton G, Taylor KM , et al. A New Era of Pulmonary Delivery of Nano-antimicrobial Therapeutics to Treat Chronic Pulmonary Infections. Curr Pharm Des, 2016,22(17):2577-2598. | 
| [27] | Pinheiro M, Ribeiro R, Vieira A , et al. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des Devel Ther, 2016,10:2467-2475. | 
| [28] | Costa A, Pinheiro M, Magalhaes J , et al. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev, 2016,102:102-115. | 
| [29] | Anderson CF, Grimmett ME, Domalewski CJ , et al. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020,12(1):e1586. | 
| [30] | Liang Z, Ni R, Zhou J , et al. Recent advances in controlled pulmonary drug delivery. Drug Discov Today, 2015,20(3):380-389. | 
| [31] | Mosaiab T, Farr DC, Kiefel MJ , et al. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv Drug Deliv Rev, 2019,151/152:94-129. | 
| [32] | Shivangi, Meena LS . A Novel Approach in Treatment of Tuberculosis by Targeting Drugs to Infected Macrophages Using Biodegradable Nanoparticles. Appl Biochem Biotechnol, 2018,185(3):815-821. | 
| [33] | Lu E, Franzblau S, Onyuksel H , et al. Preparation of amino-glycoside-loaded chitosan nanoparticles using dextran sulphate as a counterion. J Microencapsul, 2009,26(4):346-354. | 
| [34] | El Zowalaty ME, Hussein Al Ali SH, Husseiny MI , et al. The ability of streptomycin-loaded chitosan-coated magnetic nanocomposites to possess antimicrobial and antituberculosis activities. Int J Nanomedicine, 2015,10:3269-3274. | 
| [35] | Maiti D, Tong X, Mou X , et al. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol, 2018,9:1401. | 
| [36] | Zou F, Zhou H, Jeong DY , et al. Wrinkled Surface-Mediated Antibacterial Activity of Graphene Oxide Nanosheets. ACS Appl Mater Interfaces, 2017,9(2):1343-1351. | 
| [37] | De Maio F, Palmieri V, Salustri A , et al. Graphene oxide prevents mycobacteria entry into macrophages through extracellular entrapment. Nanoscale Adv, 2019,1(4):1421-1431. | 
| [38] | Palmieri V, Papi M, Conti C , et al. The future development of bacteria fighting medical devices: the role of graphene oxide. Expert Rev Med Devices, 2016,13(11):1013-1019. | 
| [39] | De Maio F, Palmieri V, De Spirito M , et al. Carbon nanomaterials: a new way against tuberculosis. Expert Rev Med Devices, 2019,16(10):863-875. | 
| [40] | Singh R, Nawale LU, Arkile M , et al. Chemical and biological metal nanoparticles as antimycobacterial agents: A comparative study. Int J Antimicrob Agents, 2015,46(2):183-188. | 
| [41] | Olakanmi O, Kesavalu B, Pasula R , et al. Gallium nitrate is efficacious in murine models of tuberculosis and inhibits key bacterial Fe-dependent enzymes. Antimicrob Agents Chemother, 2013,57(12):6074-6080. | 
| [42] | Narayanasamy P, Switzer BL, Britigan BE . Prolonged-acting, multi-targeting gallium nanoparticles potently inhibit growth of both HIV and mycobacteria in co-infected human macrophages. Sci Rep, 2015,5:8824. | 
| [43] | Choi SR, Britigan BE, Narayanasamy P. Ga(III) Nanoparticles Inhibit Growth of both Mycobacterium tuberculosis and HIV and Release of Interleukin-6 (IL-6) and IL-8 in Coinfected Macrophages. Antimicrob Agents Chemother, 2017, 61(4). pii: e02505-16. | 
| [44] | Sato MR, Oshiro Junior JA, Machado RT , et al. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des Devel Ther, 2017,11:909-921. | 
| [45] | Vieira ACC, Chaves LL, Pinheiro M , et al. Mannosylated solid lipid nanoparticles for the selective delivery of rifampicin to macrophages. Artif Cells Nanomed Biotechnol, 2018, 46 Suppl 1: S 653-663. | 
| [46] | Maretti E, Costantino L, Rustichelli C , et al. Surface engineering of Solid Lipid Nanoparticle assemblies by methyl alpha-d-mannopyranoside for the active targeting to macrophages in anti-tuberculosis inhalation therapy. Int J Pharm, 2017,528(1/2):440-451. | 
| [47] | Gao Y, Sarfraz MK, Clas SD , et al. Hyaluronic Acid-Tocopherol Succinate-Based Self-Assembling Micelles for Targeted Delivery of Rifampicin to Alveolar Macrophages. J Biomed Nanotechnol, 2015,11(8):1312-1329. | 
| [48] | Lemmer Y, Kalombo L, Pietersen RD , et al. Mycolic acids, a promising mycobacterial ligand for targeting of nanoencapsulated drugs in tuberculosis. J Control Release, 2015,211:94-104. | 
| [49] | Mustafa S, Devi VK, Pai RS . Effect of PEG and water-soluble chitosan coating on moxifloxacin-loaded PLGA long-circulating nanoparticles. Drug Deliv Transl Res, 2017,7(1):27-36. | 
| [50] | Bharti S, Kaur G, Jain S , et al. Characteristics and mechanism associated with drug conjugated inorganic nanoparticles. J Drug Target, 2019,27(8):813-829. | 
| [51] | Pi J, Shen L, Shen H , et al. Mannosylated graphene oxide as macrophage-targeted delivery system for enhanced intracellular M.tuberculosis killing efficiency. Mater Sci Eng C Mater Biol Appl, 2019,103:109777. | 
| [52] | Costa A, Sarmento B, Seabra V . Mannose-functionalized solid lipid nanoparticles are effective in targeting alveolar macrophages. Eur J Pharm Sci, 2018,114:103-113. | 
| [53] | Tukulula M, Gouveia L, Paixao P , et al. Functionalization of PLGA Nanoparticles with 1,3-β-glucan Enhances the Intracellular Pharmacokinetics of Rifampicin in Macrophages. Pharm Res, 2018,35(6):111. | 
| [54] | Song X, Lin Q, Guo L , et al. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharm Res, 2015,32(5):1741-1751. | 
| [55] | Saraogi GK, Sharma B, Joshi B , et al. Mannosylated gelatin nanoparticles bearing isoniazid for effective management of tuberculosis. J Drug Target, 2011,19(3):219-227. | 
| [56] | Jain SK, Gupta Y, Ramalingam L , et al. Lactose-Conjugated PLGA Nanoparticles for Enhanced Delivery of Rifampicin to the Lung for Effective Treatment of Pulmonary Tuberculosis. PDA J Pharm Sci Technol, 2010,64(3):278-287. | 
| [57] | Doshi N, Mitragotri S . Macrophages recognize size and shape of their targets. PLoS One, 2010,5(4):e10051. | 
| [58] | Dua K, Rapalli VK, Shukla SD , et al. Multi-drug resistant Mycobacterium tuberculosis & oxidative stress complexity: Emerging need for novel drug delivery approaches. Biomed Pharmacother, 2018,107:1218-1229. | 
| [1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. | 
| [2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. | 
| [3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. | 
| [4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. | 
| [5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. | 
| [6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. | 
| [7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. | 
| [8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. | 
| [9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. | 
| [10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. | 
| [11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. | 
| [12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. | 
| [13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. | 
| [14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. | 
| [15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. | 
| 阅读次数 | ||||||
| 全文 |  | |||||
| 摘要 |  | |||||
 京公网安备11010202007215号
		
		ip访问总数:  ip当日访问总数:  当前在线人数:
京公网安备11010202007215号
		
		ip访问总数:  ip当日访问总数:  当前在线人数:
		 本作品遵循Creative Commons Attribution 3.0 License授权许可
本作品遵循Creative Commons Attribution 3.0 License授权许可