中国防痨杂志 ›› 2020, Vol. 42 ›› Issue (3): 282-285.doi: 10.3969/j.issn.1000-6621.2020.03.019
收稿日期:2019-12-06
出版日期:2020-03-10
发布日期:2020-03-18
通信作者:
赵俊伟
E-mail:edward35@126.com
基金资助:Received:2019-12-06
Online:2020-03-10
Published:2020-03-18
Contact:
Jun-wei ZHAO
E-mail:edward35@126.com
摘要:
结核病仍然是严重危害人类健康的慢性传染性疾病,外泌体在结核病的发生发展中扮演了重要角色,非编码RNA与结核病的诊断近年也备受关注。作者阐述了外泌体与结核分枝杆菌感染、外泌体非编码RNA与结核病诊断的最新进展,旨在从外泌体非编码RNA的角度为结核病早期诊断、疗效监测、预后判断的研究提供新的思路。
高书慧,赵俊伟. 外泌体非编码RNA作为结核病诊断潜在生物标志物的研究进展[J]. 中国防痨杂志, 2020, 42(3): 282-285. doi: 10.3969/j.issn.1000-6621.2020.03.019
GAO Shu-hui,ZHAO Jun-wei. Research progress of exosomal non-coding RNA as potential biomarkers of tuberculosis[J]. Chinese Journal of Antituberculosis, 2020, 42(3): 282-285. doi: 10.3969/j.issn.1000-6621.2020.03.019
| [1] | Global tuberculosis report 2019. Global tuberculosis report 2019. Geneva: World Health Organization, 2019. |
| [2] | Cui JY, Liang HW, Pan XL , et al. Characterization of a novel panel of plasma microRNAs that discriminates between Mycobacterium tuberculosis infection and healthy individuals. PLoS One, 2017,12(9):e0184113. |
| [3] | Liu F, Chen J, Wang P , et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun, 2018,9(1):4295. |
| [4] | Yang X, Yang J, Wang J , et al. Microarray analysis of long noncoding RNA and mRNA expression profiles in human macrophages infected with Mycobacterium tuberculosis. Sci Rep, 2016,6:38963. |
| [5] | Huang S, Huang Z, Luo Q , et al. The expression of lncRNA NEAT1 in human tuberculosis and its antituberculosis effect. Biomed Res Int, 2018,2018:9529072. |
| [6] | He J, Ou Q, Liu C , et al. Differential expression of long non-coding RNAs in patients with tuberculosis infection. Tuberculosis (Edinb), 2017,107:73-79. |
| [7] | Alipoor SD, Mortaz E, Garssen J , et al. Exosomes and exosomal miRNA in respiratory diseases. Mediators Inflamm, 2016,2016:5628404. |
| [8] | Zhang W, Jiang X, Bao J , et al. Exosomes in pathogen infections: a bridge to deliver molecules and link functions. Front Immunol, 2018,9:90. |
| [9] | Wang J, Yao Y, Chen X , et al. Host derived exosomes-pathogens interactions: Potential functions of exosomes in pathogen infection. Biomed Pharmacother, 2018,108:1451-1459. |
| [10] | Wang Y, Liu J, Ma J , et al. Exosomal circRNAs: biogenesis, effect and application in human diseases. Mol Cancer, 2019,18(1):116. |
| [11] | Bellin G, Gardin C, Ferroni L , et al. Exosome in cardiovascular diseases: a complex world full of hope. Cells, 2019,8(2):166. |
| [12] | 王鑫洋, 付英梅, 赵雁林 , 等. 结核分枝杆菌外泌体的研究进展. 中国防痨杂志, 2018,40(10):1129-1133. |
| [13] | Giri PK, Kruh NA, Dobos KM , et al. Proteomic analysis identifies highly antigenic proteins in exosomes from M.tuberculosis-infected and culture filtrate protein-treated macrophages. Proteomics, 2010,10(17):3190-3202. |
| [14] | Hadifar S, Fateh A, Yousefi MH , et al. Exosomes in tuberculosis: Still terra incognita? J Cell Physiol, 2019,234(3):2104-2111. |
| [15] | Hosseini HM, Fooladi AA, Nourani MR , et al. The role of exosomes in infectious diseases. Inflamm Allergy Drug Targets, 2013,12(1):29-37. |
| [16] | Schorey JS, Bhatnagar S . Exosome function: from tumor immunology to pathogen biology. Traffic, 2008,9(6):871-881. |
| [17] | Singh PP, LeMaire C, Tan JC , et al. Exosomes released from M.tuberculosis infected cells can suppress IFN-γ mediated activation of naïve macrophages. PLoS One, 2011,6(4):e18564. |
| [18] | Cheng Y, Schorey JS . Extracellular vesicles deliver Mycobacterium RNA to promote host immunity and bacterial killing. EMBO Rep, 2019, 20(3). pii: e46613. |
| [19] | 吕翎娜, 贾红彦, 廖莎 , 等. 结核分枝杆菌膜囊泡的分离及其对细胞因子释放的作用. 中国防痨杂志, 2017,39(8):799-804. |
| [20] | Jurkoshek KS, Wang Y, Athman JJ , et al. Interspecies Communication between Pathogens and Immune Cells via Bacterial Membrane Vesicles. Front Cell Dev Biol, 2016,4:125. |
| [21] | Prados-Rosales R, Carreño LJ, Batista-Gonzalez A , et al. Mycobacterial membrane vesicles administered systemically in mice induce a protective immune response to surface compartments of Mycobacterium tuberculosis. mBio, 2014,5(5):e01921-14. |
| [22] | Dicks KV, Stout JE . Molecular Diagnostics for Mycobacterium tuberculosis Infection. Annu Rev Med, 2019,70:77-90. |
| [23] | 吴海燕, 叶志坚, 王霞芳 , 等. GeneXpert MTB/RIF技术诊断肺结核及利福平耐药性的价值. 结核病与肺部健康杂志, 2019,8(3):172-177. |
| [24] | 陆宇, 朱莉贞, 段连山 , 等. mRNA作为结核分支杆菌活菌检测标志的可行性研究. 中华结核和呼吸杂志, 2003,26(7):419-423. |
| [25] | Fan L, Li D, Zhang S , et al. Parallel tests using culture, Xpert MTB/RIF, and SAT-TB in sputum plus bronchial alveolar lavage fluid significantly increase diagnostic performance of smear-negative pulmonary tuberculosis. Front Microbiol, 2018,9:1107. |
| [26] | Wu LS, Lee SW, Huang KY , et al. Systematic expression profiling analysis identifies specific microRNA-gene interactions that may differentiate between active and latent tuberculosis infection. Biomed Res Int, 2014,2014:895179. |
| [27] | Li X, Huang S, Yu T , et al. MiR-140 modulates the inflammatory responses of Mycobacterium tuberculosis‐infected macrophages by targeting TRAF6. J Cell Mol Med, 2019,23(8):5642-5653. |
| [28] | Shi G, Mao G, Xie K , et al. MiR-1178 regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages partly via TLR4. J Cell Biochem, 2018,119(9):7449-7457. |
| [29] | Zhang G, Liu X, Wang W , et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clearance through targeting JNK2 in human macrophages. Cell Cycle, 2016,15(18):2527-2538. |
| [30] | Lin Y, Zhang Y, Yu H , et al. Identification of unique key genes and miRNAs in latent tuberculosis infection by network analysis. Mol Immunol, 2019,112:103-114. |
| [31] | Yan H, Xu R, Zhang X , et al. Identifying differentially expressed long non-coding RNAs in PBMCs in response to the infection of multidrug-resistant tuberculosis. Infect Drug Resist, 2018,11:945-959. |
| [32] | Li M, Cui J, Niu W , et al. Long non-coding PCED1B-AS1 regulates macrophage apoptosis and autophagy by sponging miR-155 in active tuberculosis. Biochem Biophys Res Commun, 2019,509(3):803-809. |
| [33] | Huang ZK, Yao FY, Xu JQ , et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem, 2018,45(3):1230-1240. |
| [34] | Huang Z, Su R, Qing C , et al. Plasma Circular RNAs hsa_circ_0001953 and hsa_circ_0009024 as Diagnostic Biomarkers for Active Tuberculosis. Front Microbiol, 2018,9:2010. |
| [35] | Qian Z, Liu H, Li M , et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine, 2018,27:18-26. |
| [36] | Yi Z, Gao K, Li R , et al. Dysregulated circRNAs in plasma from active tuberculosis patients. J Cell Mol Med, 2018,22(9):4076-4084. |
| [37] | Fu Y, Wang J, Qiao J , et al. Signature of circular RNAs in peripheral blood mononuclear cells from patients with active tuberculosis. J Cell Mol Med, 2019,23(3):1917-1925. |
| [38] | Valadi H, Ekström K, Bossios A , et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol, 2007,9(6):654-659. |
| [39] | Wu J, Gu J, Shen L , et al. Exosomal MicroRNA-155 inhibits enterovirus A71 infection by targeting PICALM. Int J Biol Sci, 2019,15(13):2925-2935. |
| [40] | Li S, Li S, Wu S , et al. Exosomes modulate the viral replication and host immune responses in HBV infection. Biomed Res Int, 2019,2019:2103943. |
| [41] | Li DL, Zou WH, Deng SQ , et al. Analysis of the Differential Exosomal miRNAs of DC2.4 Dendritic Cells Induced by Toxoplasma gondii Infection. Int J Biol Sci, 2019, 20(21). pii: E5506. |
| [42] | Mortaz E, Alipoor SD, Tabarsi P , et al. The analysis of exosomal micro-RNAs in peripheral blood mononuclear cell-derived macrophages after infection with bacillus Calmette-Guerin by RNA sequencing. Int J Mycobacteriol, 2016,5 Suppl 1: S184-185. |
| [43] | Alipoor SD, Mortaz E, Tabarsi P , et al. Bovis Bacillus Calmette-Guerin (BCG) infection induces exosomal miRNA release by human macrophages. J Transl Med, 2017,15(1):105. |
| [44] | Singh PP, Li L, Schorey JS . Exosomal RNA from Mycobacterium tuberculosis-infected cells is functional in recipient macrophages. Traffic, 2015,16(6):555-571. |
| [45] | Wang Y, Xu YM, Zou YQ , et al. Identification of differential expressed PE exosomal miRNA in lung adenocarcinoma, tuberculosis, and other benign lesions. Medicine (Baltimore), 2017,96(44):e8361. |
| [46] | Zhang D, Yi Z, Fu Y . Downregulation of miR-20b-5p facilitates Mycobacterium tuberculosis survival in RAW 264.7 macrophages via attenuating the cell apoptosis by Mcl-1 upregulation. J Cell Biochem, 2019,120(4):5889-5896. |
| [47] | Alipoor SD, Tabarsi P, Varahram M , et al. Serum exosomal miRNAs are associated with active pulmonary tuberculosis. Dis Markers, 2019,2019:1907426. |
| [48] | Hu X, Liao S, Bai H , et al. Integrating exosomal microRNAs and electronic health data improved tuberculosis diagnosis. EBioMedicine, 2019,40:564-573. |
| [49] | Lv L, Li C, Zhang X , et al. RNA profiling analysis of the serum exosomes derived from patients with active and latent Mycobacterium tuberculosis infection. Front Microbiol, 2017,8:1051. |
| [50] | Lyu L, Zhang X, Li C , et al. Small RNA profiles of serum exosomes derived from individuals with latent and active tuberculosis. Front Microbiol, 2019,10:1174. |
| [51] | 高谦, 梅建, 谭卫国 . 实事求是抓住核心脚踏实地精准防控. 中国防痨杂志, 2019,41(10):1074-1079. |
| [1] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
| [2] | 李锦浩, 胡冬梅, 徐彩红. 结核病防治医务工作者开展预防性抗结核治疗工作意愿调查及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 398-407. |
| [3] | 李玉红, 梅金周, 苏伟, 阮云洲, 刘玉舒, 赵雁林, 刘小秋. 2015—2021年全国65岁及以上老年利福平耐药肺结核患者治疗转归及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 408-415. |
| [4] | 姜雪, 白云龙, 马建军, 安源, 杨帆, 赵庆龙. 2020—2023年吉林省利福平耐药肺结核患者诊治延迟现状及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 416-424. |
| [5] | 吴璇, 张艳秋, 徐吉英, 孟丹, 孙定勇. 2019—2023年河南省肺结核合并糖尿病患者治疗转归影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 425-431. |
| [6] | 安源, 白云龙, 赵庆龙, 马建军, 姜雪, 潘艳, 高迎, 高智慧. 2018—2022年吉林省肺结核合并糖尿病患者治疗转归情况及影响因素分析[J]. 中国防痨杂志, 2025, 47(4): 432-438. |
| [7] | 冯畏, 郑海伦, 孟炜丽, 罗萍. 2018—2023年北京市西城区结核病防治机构登记管理肺结核患者到位前漏报情况分析[J]. 中国防痨杂志, 2025, 47(4): 439-443. |
| [8] | 胡一凡, 杜博平, 吴亚东, 朱传智, 张蓝月, 贾红彦, 孙琦, 潘丽萍, 张宗德, 李自慧. Mce4C蛋白参与结核分枝杆菌摄取利用胆固醇的实验研究[J]. 中国防痨杂志, 2025, 47(4): 444-453. |
| [9] | 盛杰, 洪凯峰, 米尔扎提·艾沙, 唐伟, 地里下提·阿不力孜. 白细胞介素22和p38 MAPK信号通路抑制骨关节结核骨质破坏的作用机制研究[J]. 中国防痨杂志, 2025, 47(4): 454-459. |
| [10] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
| [11] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
| [12] | 郝明晓, 米洁, 许宗仪. 延续性护理路径在结核性脑膜炎患者中的应用效果分析[J]. 中国防痨杂志, 2025, 47(4): 477-481. |
| [13] | 尚希钰, 张慧芳, 曹玉清, 熊一白, 纪鑫毓, 田雅欣, 李佳佳, 王倪, 马艳. 基于文献计量学的结核病中医药基础研究全球研究现状及热点分析[J]. 中国防痨杂志, 2025, 47(4): 482-497. |
| [14] | 秦丽莉, 杨澄清, 麦洪珍, 徐齐峰, 薛新颖, 路希维. 结核后肺曲霉病的临床诊疗研究进展[J]. 中国防痨杂志, 2025, 47(4): 498-504. |
| [15] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010202007215号
ip访问总数: ip当日访问总数: 当前在线人数:
本作品遵循Creative Commons Attribution 3.0 License授权许可
