| [1] |
屈燕, 李涛, 马文斌, 等. 世界卫生组织《2025年全球结核病报告》解读. 结核与肺部疾病杂志, 2025, 6(6):613-623. doi:10.19983/j.issn.2096-8493.20250178.
|
| [2] |
Chen Z, Wang T, Du J, et al. Decoding the WHO Global Tuberculosis Report 2024: A Critical Analysis of Global and Chinese Key Data. Zoonoses, 2025, 5(1): 1-16. doi:10.15212/ZOONOSES-2024-0061.
|
| [3] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
| [4] |
高磊, 张慧, 胡茂桂, 等. 基于多中心调查数据和空间统计模型的全国结核分枝杆菌潜伏感染率估算. 中国防痨杂志, 2022, 44(1): 54-59. doi:10.19982/j.issn.1000-6621.20210661.
|
| [5] |
Hartman-Adams H, Clark K, Juckett G. Update on latent tuberculosis infection. Am Fam Physician, 2014, 89(11): 889-896.
pmid: 25077395
|
| [6] |
Mazurek GH, Jereb J, Vernon A, et al. Updated guidelines for using Interferon Gamma Release Assays to detect Mycobacterium tuberculosis infection-United States, 2010. MMWR Recomm Rep, 2010, 59(RR-5): 1-25.
pmid: 20577159
|
| [7] |
Chee CB, Gan SH, Khinmar KW, et al. Comparison of sensitivities of two commercial gamma interferon release assays for pulmonary tuberculosis. J Clin Microbiol, 2008, 46(6): 1935-1940. doi:10.1128/JCM.02403-07.
pmid: 18400912
|
| [8] |
Nisa A, Kipper FC, Panigrahy D, et al. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol, 2022, 323(5): C1444-C1474. doi:10.1152/ajpcell.00246.2022.
|
| [9] |
Zhuang L, Yang L, Li L, et al. Mycobacterium tuberculosis: immune response, biomarkers, and therapeutic intervention. MedComm (2020), 2024, 5(1): e419. doi:10.1002/mco2.419.
|
| [10] |
Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med, 2019, 16(4): e1002786. doi:10.1371/journal.pmed.1002786.
|
| [11] |
Walter ND, Miller MA, Vasquez J, et al. Blood Transcriptional Biomarkers for Active Tuberculosis among Patients in the United States: a Case-Control Study with Systematic Cross-Classifier Evaluation. J Clin Microbiol, 2016, 54(2): 274-282. doi:10.1128/JCM.01990-15.
pmid: 26582831
|
| [12] |
Joosten SA, Fletcher HA, Ottenhoff TH. A helicopter perspective on TB biomarkers: pathway and process based analysis of gene expression data provides new insight into TB pathogenesis. PLoS One, 2013, 8(9): e73230. doi:10.1371/journal.pone.0073230.
|
| [13] |
Suliman S, Thompson EG, Sutherland J, et al. Four-Gene Pan-African Blood Signature Predicts Progression to Tuberculosis. Am J Respir Crit Care Med, 2018, 197(9): 1198-1208. doi:10.1164/rccm.201711-2340OC.
|
| [14] |
Rao M, Ippolito G, Mfinanga S, et al. Latent TB Infection (LTBI)-Mycobacterium tuberculosis pathogenesis and the dynamics of the granuloma battleground. Int J Infect Dis, 2019, 80S: S58-S61. doi:10.1016/j.ijid.2019.02.035.
|
| [15] |
Mohammad-Rafiei F, Moadab F, Mahmoudi A, et al. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol, 2023, 205(12): 370. doi:10.1007/s00203-023-03704-8.
pmid: 37925389
|
| [16] |
Martin CJ, Booty MG, Rosebrock TR, et al. Efferocytosis is an innate antibacterial mechanism. Cell Host Microbe, 2012, 12(3): 289-300. doi:10.1016/j.chom.2012.06.010.
pmid: 22980326
|
| [17] |
Dallenga T, Repnik U, Corleis B, et al. M.tuberculosis-Induced Necrosis of Infected Neutrophils Promotes Bacterial Growth Following Phagocytosis by Macrophages. Cell Host Microbe, 2017, 22(4): 519-530.e3. doi:10.1016/j.chom.2017.09.003.
pmid: 29024644
|
| [18] |
Lee D, Cho M, Kim E, et al. PD-L1: From cancer immunotherapy to therapeutic implications in multiple disorders. Mol Ther, 2024, 32(12): 4235-4255. doi:10.1016/j.ymthe.2024.09.026.
|
| [19] |
杨舒琪, 李锋. 程序性死亡受体1/程序性死亡-配体1抑制剂在结核病研究中的进展. 结核与肺部疾病杂志, 2025, 6(1): 94-101. doi:10.19983/j.issn.2096-8493.2024141.
|
| [20] |
Hu JF, Zhang W, Zuo W, et al. Inhibition of the PD-1/PD-L 1 signaling pathway enhances innate immune response of alveolar macrophages to mycobacterium tuberculosis in mice. Pulm Pharmacol Ther, 2020, 60: 101842. doi:10.1016/j.pupt.2019.101842.
|
| [21] |
Jurado JO, Alvarez IB, Pasquinelli V, et al. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis. J Immunol, 2008, 181(1): 116-125. doi:10.4049/jimmunol.181.1.116.
pmid: 18566376
|
| [22] |
Zhang W, Zhang Y, Liu Z, et al. PROS1-MERTK Axis Drives Tumor Microenvironment Crosstalk and Progression in Papillary Thyroid Microcarcinoma. Adv Sci (Weinh), 2025, 12(30): e13474. doi:10.1002/advs.202413474.
|
| [23] |
Lumbroso D, Soboh S, Maimon A, et al. Macrophage-Derived Protein S Facilitates Apoptotic Polymorphonuclear Cell Clearance by Resolution Phase Macrophages and Supports Their Reprogramming. Front Immunol, 2018, 9: 358. doi:10.3389/fimmu.2018.00358.
pmid: 29545796
|
| [24] |
Nakayama K, Gazdoiu S, Abraham R, et al. Hypoxia-induced assembly of prolyl hydroxylase PHD3 into complexes: implications for its activity and susceptibility for degradation by the E3 ligase Siah2. Biochem J, 2007, 401(1): 217-226. doi:10.1042/BJ20061135.
pmid: 16958618
|
| [25] |
Nakayama K, Qi J, Ronai Z. The ubiquitin ligase Siah2 and the hypoxia response. Mol Cancer Res, 2009, 7(4): 443-451. doi:10.1158/1541-7786.MCR-08-0458.
pmid: 19372575
|
| [26] |
Qi J, Nakayama K, Gaitonde S, et al. The ubiquitin ligase Siah 2 regulates tumorigenesis and metastasis by HIF-dependent and -independent pathways. Proc Natl Acad Sci U S A, 2008, 105(43): 16713-16718. doi:10.1073/pnas.0804063105.
|
| [27] |
Mehrotra P, Jamwal SV, Saquib N, et al. Pathogenicity of Mycobacterium tuberculosis is expressed by regulating metabolic thresholds of the host macrophage. PLoS Pathog, 2014, 10(7): e1004265. doi:10.1371/journal.ppat.1004265.
|