[1] |
World Health Organization. Global tuberculosis report 2022. Geneva: World Health Organization, 2022.
|
[2] |
陈伟, 孙慧娟, 赵雁林. 新时期我国结核病防治服务体系建设及展望. 结核与肺部疾病杂志, 2024, 5(2): 95-100. doi:10.19983/j.issn.2096-8493.2024025.
|
[3] |
Romano M, Squeglia F, Kramarska E, et al. A Structural View at Vaccine Development against M.tuberculosis. Cells, 2023, 12(2): 317. doi:10.3390/cells12020317.
|
[4] |
Schrager LK, Vekemens J, Drager N, et al. The status of tuberculosis vaccine development. Lancet Infect Dis, 2020, 20(3): e28-e37. doi:10.1016/S1473-3099(19)30625-5.
pmid: 32014117
|
[5] |
Looney MM, Hatherill M, Musvosvi M, et al. Conference report: WHO meeting summary on mRNA-based tuberculosis vaccine development. Vaccine, 2023, 41(48): 7060-7066. doi:10.1016/j.vaccine.2023.10.026.
|
[6] |
Rohner E, Yang R, Foo KS, et al. Unlocking the promise of mRNA therapeutics. Nat Biotechnol, 2022, 40(11): 1586-1600. doi:10.1038/s41587-022-01491-z.
pmid: 36329321
|
[7] |
World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023.
|
[8] |
Wolff JA, Malone RW, Williams P, et al. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247(4949 Pt 1): 1465-1468. doi:10.1126/science.1690918.
pmid: 1690918
|
[9] |
袁军鸿, 杨昭庆. mRNA疫苗的研究进展. 中国生物制品学杂志, 2022, 35(6): 734-739.
|
[10] |
Kon E, Elia U, Peer D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr Opin Biotechnol, 2022, 73: 329-336. doi:10.1016/j.copbio.2021.09.016.
|
[11] |
Shahrear S, Islam ABMMK. Modeling of MT. P495, an mRNA-based vaccine against the phosphate-binding protein PstS1 of Mycobacterium tuberculosis. Mol Divers, 2023, 27(4): 1613-1632. doi:10.1007/s11030-022-10515-4.
|
[12] |
Rosa SS, Prazeres DMF, Azevedo AM, et al. mRNA vaccines manufacturing: Challenges and bottlenecks. Vaccine, 2021, 39(16): 2190-2200. doi:10.1016/j.vaccine.2021.03.038.
pmid: 33771389
|
[13] |
董文彬, 张雪梅, 陈一飞. mRNA疫苗核酸修饰与递送系统的发展历程与挑战. 中国医药工业杂志, 2023, 54(3): 304-311. doi:10.16522/j.cnki.cjph.2023.03.002.
|
[14] |
Pal R, Bisht MK, Mukhopadhyay S. Secretory proteins of Mycobacterium tuberculosis and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J, 2022, 289(14): 4146-4171. doi:10.1111/febs.16369.
|
[15] |
Al-Attiyah R, Mustafa AS. Characterization of human cellular immune responses to novel Mycobacterium tuberculosis antigens encoded by genomic regions absent in Mycobacterium bovis BCG. Infect Immun, 2008, 76(9): 4190-4198. doi:10.1128/IAI.00199-08.
pmid: 18573897
|
[16] |
Niu D, Wu Y, Lian J. Circular RNA vaccine in disease prevention and treatment. Signal Transduct Target Ther, 2023, 8 (1): 341. doi:10.1038/s41392-023-01561-x.
|
[17] |
Xie C, Yao R, Xia X. The advances of adjuvants in mRNA vaccines. NPJ Vaccines, 2023, 8(1): 162. doi:10.1038/s41541-023-00760-5.
pmid: 37884526
|
[18] |
傅佳燕, 冯硕, 杜彬荷, 等. mRNA疗法的研究进展与挑战. 中国科学: 生命科学, 2023, 53(1): 30-49.
|
[19] |
Jamous YF, Alhomoud DA. The Safety and Effectiveness of mRNA Vaccines Against SARS-CoV-2. Cureus, 2023, 15(9): e45602. doi:10.7759/cureus.45602.
|
[20] |
秦凤铭, 任宁, 成温玉, 等. 传染病mRNA疫苗的研究进展及应用. 生物工程学报, 2023, 39(10): 3966-3984. doi:10.13345/j.cjb.230273.
|
[21] |
Yang J, Zhu J, Sun J, et al. Intratumoral delivered novel circular mRNA encoding cytokines for immune modulation and cancer therapy. Mol Ther Nucleic Acids, 2022, 30: 184-197. doi:10.1016/j.omtn.2022.09.010.
|
[22] |
Yousefi Avarvand A, Khademi F, Tafaghodi M, et al. The roles of latency-associated antigens in tuberculosis vaccines. Indian J Tuberc, 2019, 66 (4): 487-491. doi:10.1016/j.ijtb.2019.04.012.
pmid: 31813436
|
[23] |
Zhu B, Dockrell HM, Ottenhoff THM, et al. Tuberculosis vaccines: Opportunities and challenges. Respirology, 2018, 23(4): 359-368. doi:10.1111/resp.13245.
pmid: 29341430
|
[24] |
Hia F, Takeuchi O. The effects of codon bias and optimality on mRNA and protein regulation. Cell Mol Life Sci, 2021, 78(5): 1909-1928. doi:10.1007/s00018-020-03685-7.
pmid: 33128106
|
[25] |
Hanson G, Coller J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol, 2018, 19(1): 20-30. doi:10.1038/nrm.2017.91.
|
[26] |
Lampson BC, Inouye S, Inouye M. msDNA of bacteria. Prog Nucleic Acid Res Mol Biol, 1991, 40: 1-24. doi:10.1016/s0079-6603(08)60838-7.
|
[27] |
To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines. Expert Opin Drug Discov, 2021, 16(11): 1307-1317. doi:10.1080/17460441.2021.1935859.
|
[28] |
Chaney JL, Clark PL. Roles for Synonymous Codon Usage in Protein Biogenesis. Annu Rev Biophys, 2015, 44: 143-166. doi:10.1146/annurev-biophys-060414-034333.
pmid: 25747594
|
[29] |
Gebre MS, Brito LA, Tostanoski LH, et al. Novel approaches for vaccine development. Cell, 2021, 184(6): 1589-1603. doi:10.1016/j.cell.2021.02.030.
pmid: 33740454
|
[30] |
Samaridou E, Heyes J, Lutwyche P. Lipid nanoparticles for nucleic acid delivery: Current perspectives. Adv Drug Deliv Rev, 2020, 154-155: 37-63. doi:10.1016/j.addr.2020.06.002.
|
[31] |
苗佳颖, 陆伟. 应用于mRNA疫苗的非病毒载体递送系统研究进展. 药学进展, 2022, 46(2): 84-92.
|
[32] |
Picon MA, Wang L, Da Fonseca Ferreira A, et al. Extracellular Vesicles as Delivery Systems in Disease Therapy. Int J Mol Sci, 2023, 24(24): 17134. doi:10.3390/ijms242417134.
|
[33] |
金盈圻, 王宗保, 王川. 衣原体mRNA疫苗的研发对策与展望. 中国人兽共患病学报, 2022, 38(4): 349-358. doi:10.3969/j.issn.1002-2694.2022.00.032.
|
[34] |
夏敏, 杨晓岚, 杨鹏辉, 等. 结核分枝杆菌Ag85B-mRNA疫苗的体外合成及其免疫原性研究. 免疫学杂志, 2019, 35(5): 404-408. doi:10.13431/j.cnki.immunol.j.20190061.
|
[35] |
World Health Organization. TB Research Tracker. Geneva: World Health Organization, 2023.
|
[36] |
健康报. 新型结核病疫苗,何时走进现实[EB/OL]. [2023-07-25]. https://www.thepaper.cn/newsDetail_forward_23978724.
|
[37] |
高嘉淇, 赵献军, 华进联. mRNA疫苗在人和动物重大疫病防控中的研究进展. 生理学报, 2023, 75(5): 647-658. doi:10.13294/j.aps.2023.0058.
|