中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (12): 1363-1368.doi: 10.19982/j.issn.1000-6621.20220312
收稿日期:
2022-08-12
出版日期:
2022-12-10
发布日期:
2022-12-02
通信作者:
孙照刚
E-mail:sunzg75@163.com
基金资助:
Sheng Gang, Chu Hongqian, Liu Dingyi, Sun Zhaogang()
Received:
2022-08-12
Online:
2022-12-10
Published:
2022-12-02
Contact:
Sun Zhaogang
E-mail:sunzg75@163.com
Supported by:
摘要:
结核病是由结核分枝杆菌感染导致的严重的呼吸系统传染病,其传播隐匿,防控难度大。目前的结核病快速发现技术存在一定缺陷,亟需新的诊断技术。抗原检测技术具有适用广泛、操作简便、快速精确的优点,但尚未发现具有良好的稳定检测效果的靶标。另外,即使是针对同一抗原靶标,不同研究的检测效能差异也较大。因此,笔者对不同鉴定方法和实验研究证实的各种临床标本中存在的抗原蛋白的检测状况进行综述,以重新思考结核分枝杆菌抗原在临床标本中实际存在的状态和含量,以及改进抗原发现和鉴定的方法,为结核病抗原诊断技术的发展提供理论参考。
中图分类号:
盛钢, 褚洪迁, 刘丁一, 孙照刚. 临床标本中结核分枝杆菌抗原蛋白鉴定的研究进展[J]. 中国防痨杂志, 2022, 44(12): 1363-1368. doi: 10.19982/j.issn.1000-6621.20220312
Sheng Gang, Chu Hongqian, Liu Dingyi, Sun Zhaogang. Progress in the identification of Mycobacterium tuberculosis antigenic proteins in clinical specimens[J]. Chinese Journal of Antituberculosis, 2022, 44(12): 1363-1368. doi: 10.19982/j.issn.1000-6621.20220312
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] | World Health Organization. Global tuberculosis control 2010. Geneva:World Health Organization, 2010. |
[3] |
Murray CJ. World tuberculosis burden. Lancet, 1990, 335(8696): 1043-1044. doi:10.1016/0140-6736(90)91114-p.
doi: 10.1016/0140-6736(90)91114-p pmid: 1970100 |
[4] |
戴振华, 郭兰芹, 张贺秋, 等. 结核分枝杆菌抗原检测研究进展. 生物技术通讯, 2013, 24(5):732-735. doi:10.3969/j.issn.1009-0002.2013.05.031.
doi: 10.3969/j.issn.1009-0002.2013.05.031 |
[5] |
孙照刚. 重视结核分枝杆菌抗原检测技术研发. 中国防痨杂志, 2022, 44(23):120-124. doi:10.19982/j.issn.1000-6621.20210558.
doi: 10.19982/j.issn.1000-6621.20210558 |
[6] |
Banerjee S, Kumar S, Harinath BC. Isolation and characterisation of in vivo released 41 kDa mycobacterial antigen in pulmonary and bone and joint tuberculosis and its identification with H37Ra in vitro released antigen. Int J Tuberc Lung Dis, 2003, 7(3): 278-283.
pmid: 12661844 |
[7] |
Shende N, Upadhye V, Kumar S, et al. A low molecular weight ES-20 protein released in vivo and in vitro with diagnostic potential in lymph node tuberculosis. Indian J Med Microbiol, 2008, 26(1): 29-33. doi:10.4103/0255-0857.38854.
doi: 10.4103/0255-0857.38854 |
[8] |
Harinath BC. Mycobacterial excretory secretory-31 protein with serine protease and lipase activities: An immunogen and drug target against tuberculosis infection. Int J Mycobacteriol, 2016, 5 Suppl 1:S86-S87. doi:10.1016/j.ijmyco.2016.09.065.
doi: 10.1016/j.ijmyco.2016.09.065 pmid: 28043634 |
[9] |
Attallah AM, Osman S, Saad A, et al. Application of a circulating antigen detection immunoassay for laboratory diagnosis of extra-pulmonary and pulmonary tuberculosis. Clin Chim Acta, 2005, 356(1-2): 58-66. doi:10.1016/j.cccn.2004.11.036.
doi: 10.1016/j.cccn.2004.11.036 pmid: 15936303 |
[10] |
Wadee AA, Boting L, Reddy SG. Antigen capture assay for detection of a 43-kilodalton Mycobacterium tuberculosis antigen. J Clin Microbiol, 1990, 28(12): 2786-2791. doi:10.1128/jcm.28.12.2786-2791.1990.
doi: 10.1128/jcm.28.12.2786-2791.1990 pmid: 2126267 |
[11] |
Ramakrishnan L. Revisiting the role of the granuloma in tuberculosis. Nat Rev Immunol, 2012, 12(5):352-366. doi:10.1038/nri3211.
doi: 10.1038/nri3211 pmid: 22517424 |
[12] |
Saha D, Rautela K, Kumar A, et al. Patterns of granulomatous responses in TB lymphadenitis and their correlation with treatment outcomes. Indian J Tuberc, 2016, 63(3): 171-175. doi:10.1016/j.ijtb.2016.08.008.
doi: 10.1016/j.ijtb.2016.08.008 URL |
[13] | Goel MM, Budhwar P. Immunohistochemical localization of Mycobacterium tuberculosis complex antigen with antibody to 38 kDa antigen versus ZiehlNeelsen staining in tissue granulomas of extrapulmonary tuberculosis. Indian J Tuberc, 2007, 54(1): 24-29. |
[14] |
Mustafa T, Leversen NA, Sviland L, et al. Differential in vivo expression of mycobacterial antigens in Mycobacterium tuberculosis infected lungs and lymph node tissues. BMC Infect Dis, 2014, 14: 535. doi:10.1186/1471-2334-14-535.
doi: 10.1186/1471-2334-14-535 URL |
[15] |
Osada-oka M, Tateishi Y, Hirayama Y, et al. Antigen 85A and mycobacterial DNA-binding protein 1 are targets of immunoglobulin G in individuals with past tuberculosis. Microbiol Immunol, 2013, 57(1): 30-37. doi:10.1111/j.1348-0421.2012.12005.x.
doi: 10.1111/j.1348-0421.2012.12005.x pmid: 23157580 |
[16] |
Zhou Y, Xiong H, Chen R, et al. Aptamer Detection of Mycobaterium tuberculosis Mannose-Capped Lipoarabinomannan in Lesion Tissues for tuberculosis Diagnosis. Front Cell Infect Microbiol, 2021, 11: 634915. doi:10.3389/fcimb.2021.634915.
doi: 10.3389/fcimb.2021.634915 |
[17] | Rajpal SK, Snehal SW, Milind SP, et al. Mycobacterium tuberculosis Heat Shock Protein 16 as a Potential Marker for Latent TB: A Preliminary Findings. J Clin Cell Immunol, 2011, 2(5): 1-4. doi:10.4172/2155-9899.1000115. |
[18] |
Peláez EC, Estevez MC, Mongui A, et al. Detection and Quantification of HspX Antigen in Sputum Samples Using Plasmonic Biosensing: Toward a Real Point-of-Care (POC) for tuberculosis Diagnosis. ACS Infect Dis, 2020, 6(5): 1110-1120. doi:10.1021/acsinfecdis.9b00502.
doi: 10.1021/acsinfecdis.9b00502 pmid: 32233503 |
[19] |
Jones A, Saini J, Kriel B, et al. Sputum lipoarabinomannan (LAM) as a biomarker to determine sputum mycobacterial load: exploratory and model-based analyses of integrated data from four cohorts. BMC Infect Dis, 2022, 22(1): 327. doi:10.1186/s12879-022-07308-3.
doi: 10.1186/s12879-022-07308-3 pmid: 35366820 |
[20] |
Kawasaki M, Echiverri C, Raymond L, et al. Lipoarabinomannan in sputum to detect bacterial load and treatment response in patients with pulmonary tuberculosis: Analytic validation and evaluation in two cohorts. PLoS Med, 2019, 16(4): e1002780. doi:10.1371/journal.pmed.1002780.
doi: 10.1371/journal.pmed.1002780 |
[21] |
Purohit MR, Sviland L, Wiker H, et al. Rapid and Specific Diagnosis of Extrapulmonary tuberculosis by Immunostaining of Tissues and Aspirates With Anti-MPT64. Appl Immunohistochem Mol Morphol, 2017, 25(4):282-288. doi:10.1097/PAI.0000000000000300.
doi: 10.1097/PAI.0000000000000300 URL |
[22] |
Raheem TY, Ojo O, Adenipekun EO, et al. Performance assessment of SD Bioline TB MPT64 assay for the diagnosis of Mycobacterium tuberculosis complex in Lagos, Nigeria. J Immunoassay Immunochem, 2021, 42(5):543-558. doi:10.1080/15321819.2021.1911812.
doi: 10.1080/15321819.2021.1911812 URL |
[23] |
Grønningen E, Nanyaro M, Sviland L, et al. MPT64 antigen detection test improves diagnosis of pediatric extrapulmonary tuberculosis in Mbeya, Tanzania. Sci Rep, 2021, 11(1):17540. doi:10.1038/s41598-021-97010-2.
doi: 10.1038/s41598-021-97010-2 |
[24] |
Huynh J, Donovan J, Phu NH, et al. Tuberculous meningitis: progress and remaining questions. Lancet Neurol, 2022, 21(5):450-464. doi:10.1016/S1474-4422(21)00435-X.
doi: 10.1016/S1474-4422(21)00435-X pmid: 35429482 |
[25] |
Song FX, Sun XW, Wang XT, et al. Significance of Mycobacterium tuberculosis antigen expression in cerebrospinal fluid monocytes in diagnosing tuberculous meningitis. Indian J Pathol Microbiol, 2014, 57(2): 265-268. doi:10.4103/0377-4929.134705.
doi: 10.4103/0377-4929.134705 URL |
[26] |
Bekmurzayeva A, Sypabekova M, Kanayeva D. Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis. Tuberculosis (Edinb), 2013, 93(4): 381-388. doi:10.1016/j.tube.2013.03.003.
doi: 10.1016/j.tube.2013.03.003 URL |
[27] |
姜晓颖, 李传友. 结核病血清学检测的研究进展. 国际呼吸杂志, 2012, 32(17):1354-1357. doi:10.3760/cma.j.issn.1673-436X.
doi: 10.3760/cma.j.issn.1673-436X |
[28] |
Mudaliar AV, Kashyap RS, Purohit HJ, et al. Detection of 65 kD heat shock protein in cerebrospinal fluid of tuberculous meningitis patients. BMC Neurol, 2006, 6:34. doi:10.1186/1471-2377-6-34.
doi: 10.1186/1471-2377-6-34 pmid: 16978411 |
[29] | WHO Guidelines Approved by the Guidelines Review Committee. Automated Real-Time Nucleic Acid Amplification Technology for Rapid and Simultaneous Detection of tuberculosis and Rifampicin Resistance: Xpert MTB/RIF Assay for the Diagnosis of Pulmonary and Extrapulmonary TB in Adults and Children: Policy Update. Geneva: World Health Organization, 2013. |
[30] |
Nhu NT, Heemskerk D, Thu Do DA, et al. Evaluation of GeneXpert MTB/RIF for diagnosis of tuberculous meningitis. J Clin Microbiol, 2014, 52(1): 226-233. doi:10.1128/JCM.01834-13.
doi: 10.1128/JCM.01834-13 pmid: 24197880 |
[31] |
Patel VB, Theron G, Lenders L, et al. Diagnostic accuracy of quantitative PCR (Xpert MTB/RIF) for tuberculous meningitis in a high burden setting: a prospective study. PLoS Med, 2013, 10(10): e1001536. doi:10.1371/journal.pmed.1001536.
doi: 10.1371/journal.pmed.1001536 |
[32] |
Flores J, Cancino JC, Chavez-Galan L. Lipoarabinomannan as a Point-of-Care Assay for Diagnosis of tuberculosis: How Far Are We to Use It?. Front Microbiol, 2021, 12: 638047. doi:10.3389/fmicb.2021.638047.
doi: 10.3389/fmicb.2021.638047 |
[33] |
CHoudhary A, Patel D, Honnen W, et al. Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of Mycobacterium tuberculosis, and Complexity of Antibody Specificities toward This Antigen. J Immunol, 2018, 200(9): 3053-3066. doi:10.4049/jimmunol.1701673.
doi: 10.4049/jimmunol.1701673 URL |
[34] |
Sigal GB, Pinter A, Lowary TL, et al. A Novel Sensitive Immunoassay Targeting the 5-Methylthio-d-Xylofuranose-Lipoarabinomannan Epitope Meets the WHO’s Performance Target for tuberculosis Diagnosis. J Clin Microbiol, 2018, 56(12):e01338-18. doi:10.1128/JCM.01338-18.
doi: 10.1128/JCM.01338-18 |
[35] |
Choudhry V, Saxena RK. Detection of Mycobacterium tuberculosis antigens in urinary proteins of tuberculosis patients. Eur J Clin Microbiol Infect Dis, 2002, 21(1): 1-5. doi:10.1007/s10096-001-0651-7.
doi: 10.1007/s10096-001-0651-7 URL |
[36] |
Seifert M, Vargas E, Ruiz-Valdepeñas Montiel V, et al. Detection and quantification of Mycobacterium tuberculosis antigen CFP 10 in serum and urine for the rapid diagnosis of active tuberculosis disease. Sci Rep, 2021, 11(1):19193. doi:10.1038/s41598-021-98471-1.
doi: 10.1038/s41598-021-98471-1 |
[37] |
Hamasur B, Bruchfeld J, Haile M, et al. Rapid diagnosis of tuberculosis by detection of mycobacterial lipoarabinomannan in urine. J Microbiol Methods, 2001, 45(1): 41-52. doi:10.1016/s0167-7012(01)00239-1.
doi: 10.1016/s0167-7012(01)00239-1 pmid: 11295196 |
[38] |
Dahiya B, Khan A, Mor P, et al. Detection of Mycobacterium tuberculosis lipoarabinomannan and CFP-10 (Rv3874) from urinary extracellular vesicles of tuberculosis patients by immuno-PCR. Pathog Dis, 2019, 77(5):ftz049. doi:10.1093/femspd/ftz049.
doi: 10.1093/femspd/ftz049 |
[39] |
Chuo ST, Chien JC, Lai CP. Imaging extracellular vesicles: current and emerging methods. J Biomed Sci, 2018, 25(1): 91. doi:10.1186/s12929-018-0494-5.
doi: 10.1186/s12929-018-0494-5 URL |
[40] |
Shah M, Martinson NA, Chaisson RE, et al. Quantitative analysis of a urine-based assay for detection of lipoarabinomannan in patients with tuberculosis. J Clin Microbiol, 2010, 48(8): 2972-2974. doi:10.1128/JCM.00363-10.
doi: 10.1128/JCM.00363-10 pmid: 20534796 |
[41] |
De P, Amin AG, Valli E, et al. Estimation of D-Arabinose by Gas Chromatography/Mass Spectrometry as Surrogate for Mycobacterial Lipoarabinomannanin Human Urine. PLoS One, 2015, 10(12):e0144088. doi:10.1371/journal.pone.0144088.
doi: 10.1371/journal.pone.0144088 |
[42] |
Seid G, Alemu A, Tsedalu T, et al. Value of urine-based lipoarabinomannan (LAM) antigen tests for diagnosing tuberculosis in children: systematic review and meta-analysis. IJID Reg, 2022, 4:97-104. doi:10.1016/j.ijregi.2022.06.004.
doi: 10.1016/j.ijregi.2022.06.004 |
[43] |
Paris L, Magni R, Zaidi F, et al. Urine lipoarabinomannan glycan in HIV-negative patients with pulmonary tuberculosis correlates with disease severity. Sci Transl Med, 2017, 9(420):eaal2807. doi:10.1126/scitranslmed.aal2807.
doi: 10.1126/scitranslmed.aal2807 URL |
[44] |
De P, Shi L, Boot C, et al. Comparative Structural Study of Terminal Ends of Lipoarabinomannan from Mice Infected Lung Tissues and Urine of a tuberculosis Positive Patient. ACS Infect Dis, 2020, 6(2): 291-301. doi:10.1021/acsinfecdis.9b00355.
doi: 10.1021/acsinfecdis.9b00355 pmid: 31762254 |
[45] |
Pollock N, Dhiman R, Daifalla N, et al. Discovery of a unique Mycobacterium tuberculosis protein through proteomic analysis of urine from patients with active tuberculosis. Microbes Infect, 2018, 20(4): 228-235. doi:10.1016/j.micinf.2017.12.011.
doi: S1286-4579(17)30239-3 pmid: 29306028 |
[46] |
Young BL, Mlamla Z, Gqamana PP, et al. The identification of tuberculosis biomarkers in human urine samples. Eur Respir J, 2014, 43(6): 1719-1729. doi:10.1183/09031936.00175113.
doi: 10.1183/09031936.00175113 pmid: 24743962 |
[47] | Ashtekar MD, Dhalla AS, Mazarello TB, et al. A study of Mycobacterium tuberculosis antigen and antibody in cerebrospinal fluid and blood in tuberculous meningitis. Clin Immunol Immunopathol, 1987, 45(1): 29-34. doi:10.1016/0090- 1229(87)90108-5. |
[48] |
胡永亮, 孙卫国, 张灵霞, 等. 结核分枝杆菌Rv3425-Rv1168c蛋白融合表达与血清学评价. 中国人兽共患病学报, 2019, 35(1):1-4,10. doi:10.3969/j.issn.1002-2694.2018.00.211.
doi: 10.3969/j.issn.1002-2694.2018.00.211 |
[49] |
Sørensen AL, Nagai S, Houen G, et al. Purification and characterization of a low-molecular-mass T-cell antigen secreted by Mycobacterium tuberculosis. Infect Immun, 1995, 63(5): 1710-1717. doi:10.1128/iai.63.5.1710-1717.1995.
doi: 10.1128/iai.63.5.1710-1717.1995 pmid: 7729876 |
[50] |
Berthet FX, Rasmussen PB, Rosenkrands I, et al. A Mycobacterium tuberculosis operon encoding ESAT-6 and a novel low-molecular-mass culture filtrate protein (CFP-10). Microbiology (Reading), 1998, 144 (Pt 11): 3195-3203. doi:10.1099/00221287-144-11-3195.
doi: 10.1099/00221287-144-11-3195 URL |
[51] |
张民, 张新. 结核杆菌特异性抗原对结核病诊断价值的研究. 中国实用医药, 2015, 10(19):49-50. doi:10.14163/j.cnki.11-5547/r.2015.19.026.
doi: 10.14163/j.cnki.11-5547/r.2015.19.026 |
[52] |
吴桂玲, 王琳, 阿依古丽·依玛汉斯, 等. 结核分枝杆菌早期分泌靶抗原6与培养滤液蛋白10对痰检涂阴肺结核的诊断价值. 中国基层医药, 2017, 24(23):3601-3605. doi:10.3760/cma.j.issn.1008-6706.2017.23.021.
doi: 10.3760/cma.j.issn.1008-6706.2017.23.021 |
[53] |
冯晓燕, 陈坤, 宋晓国, 等. 结核分枝杆菌抗原优势肽段融合抗原38kD-ESAT6-CFP10的构建与抗原性初步检测. 中国实验诊断学, 2009, 13(3):285-288. doi:10.3969/j.issn.1007-4287.2009.03.001.
doi: 10.3969/j.issn.1007-4287.2009.03.001 |
[54] |
Khurshid S, Afzal M, Khalid R, et al. Potential of multi-component antigens for tuberculosis diagnosis. Biologicals, 2017, 48: 109-113. doi:10.1016/j.biologicals.2017.04.004.
doi: S1045-1056(17)30050-7 pmid: 28522247 |
[55] |
Zhang L, Ma H, Wan S, et al. Mycobacterium tuberculosis latency-associated antigen Rv1733c SLP improves the accuracy of differential diagnosis of active tuberculosis and latent tuberculosis infection. Chin Med J (Engl), 2021, 135(1):63-69. doi:10.1097/CM9.0000000000001858.
doi: 10.1097/CM9.0000000000001858 |
[56] |
Zhou F, Xu X, Cui X, et al. Development and Evaluation of a Fusion Polyprotein Based on HspX and Other Antigen Sequences for the Serodiagnosis of tuberculosis. Front Immunol, 2021, 12: 726920. doi:10.3389/fimmu.2021.726920.
doi: 10.3389/fimmu.2021.726920 |
[57] |
Srivastava S, Abraham PR, Mukhopadhyay S. Aptamers: An Emerging Tool for Diagnosis and Therapeutics in tuberculosis. Front Cell Infect Microbiol, 2021, 11: 656421. doi:10.3389/fcimb.2021.656421.
doi: 10.3389/fcimb.2021.656421 |
[58] |
Salimiyan Rizi K, Aryan E, Meshkat Z, et al. The overview and perspectives of biosensors and Mycobacterium tuberculosis: A systematic review. J Cell Physiol, 2021, 236(3):1730-1750. doi:10.1002/jcp.30007.
doi: 10.1002/jcp.30007 URL |
[1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[2] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[3] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[4] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[5] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[6] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[7] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[8] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[9] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[10] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
[11] | 尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. |
[12] | 陈玉杰, 王玲华, 程晓艳, 李慧圆. 医护人员结核分枝杆菌潜伏感染研究进展[J]. 中国防痨杂志, 2024, 46(12): 1541-1547. |
[13] | 何静, 张忠法. 肺结核患者混合感染其他病原体的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1566-1572. |
[14] | 黎超凡, 陈志. 动物模型和3D细胞模型在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(12): 1527-1534. |
[15] | 王宇津, 初乃惠, 聂文娟. 康替唑胺治疗结核病的研究进展[J]. 中国防痨杂志, 2024, 46(11): 1395-1399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||