中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (9): 970-974.doi: 10.3969/j.issn.1000-6621.2021.09.019
收稿日期:2021-05-14
出版日期:2021-09-10
发布日期:2021-09-07
通信作者:
牛红霞
E-mail:niuhx@lzu.edu.cn
基金资助:
CAO Qian-qian, ZHU Bing-dong, NIU Hong-xia(
)
Received:2021-05-14
Online:2021-09-10
Published:2021-09-07
Contact:
NIU Hong-xia
E-mail:niuhx@lzu.edu.cn
摘要:
卡介苗是唯一应用于临床的结核病疫苗,但是其对成人结核病的保护效果仍存在不确定性。重组蛋白亚单位疫苗可提供长期的免疫保护效果,且成分明确、安全性好,因而具有较好的应用开发前景。作者对结核病重组蛋白亚单位疫苗的组分(结核分枝杆菌保护性抗原和免疫佐剂)、临床研究现况、应用策略及研究所面临的挑战等方面的进展进行了综述。
曹倩倩, 祝秉东, 牛红霞. 结核病重组蛋白亚单位疫苗研究进展[J]. 中国防痨杂志, 2021, 43(9): 970-974. doi: 10.3969/j.issn.1000-6621.2021.09.019
CAO Qian-qian, ZHU Bing-dong, NIU Hong-xia. Research progress on recombinant protein subunit vaccine of tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 970-974. doi: 10.3969/j.issn.1000-6621.2021.09.019
| [1] |
Tran V, Liu J, Behr MA. BCG Vaccines. Microbiol Spectr, 2014, 2(1): MGM2-0028-2013. doi: 10.1128/microbiolspec.MGM2-0028-2013.
doi: 10.1128/microbiolspec.MGM2-0028-2013 |
| [2] |
Colditz GA, Brewer TF, Berkey CS, et al. Efficacy of BCG vaccine in the prevention of tuberculosis. Meta-analysis of the published literature. JAMA, 1994, 271(9):698-702.
doi: 10.1001/jama.1994.03510330076038 URL |
| [3] |
Trunz BB, Fine P, Dye C. Effect of BCG vaccination on childhood tuberculous meningitis and miliary tuberculosis worldwide: a meta-analysis and assessment of cost-effectiveness. Lancet, 2006, 367(9517):1173-1180. doi: 10.1016/s0140-6736(06)68507-3.
doi: 10.1016/s0140-6736(06)68507-3 URL |
| [4] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
| [5] |
Schrager LK, Vekemens J, Drager N, et al. The status of tuberculosis vaccine development. Lancet Infect Dis, 2020, 20(3):e28-e37. doi: 10.1016/S1473-3099(19)30625-5.
doi: 10.1016/S1473-3099(19)30625-5 URL |
| [6] |
Bai C, He J, Niu H, et al. Prolonged intervals during Mycobacterium tuberculosis subunit vaccine boosting contributes to eliciting immunity mediated by central memory-like T cells. Tuberculosis (Edinb), 2018, 110:104-111. doi: 10.1016/j.tube.2018.04.006.
doi: 10.1016/j.tube.2018.04.006 URL |
| [7] |
Kalscheuer R, Palacios A, Anso I, et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J, 2019, 476(14):1995-2016. doi: 10.1042/BCJ20190324.
doi: 10.1042/BCJ20190324 pmid: 31320388 |
| [8] |
Hunter RL, Hwang SA, Jagannath C, et al. Cord factor as an invisibility cloak? A hypothesis for asymptomatic TB persis-tence. Tuberculosis (Edinb), 2016, 101S:S2-S8. doi: 10.1016/j.tube.2016.09.023.
doi: 10.1016/j.tube.2016.09.023 |
| [9] |
Correia-Neves M, Sundling C, Cooper A, et al. Lipoarabinomannan in Active and Passive Protection Against Tuberculosis. Front Immunol, 2019, 10:1968. doi: 10.3389/fimmu.2019.01968.
doi: 10.3389/fimmu.2019.01968 pmid: 31572351 |
| [10] |
Wolfe LM, Mahaffey SB, Kruh NA, et al. Proteomic definition of the cell wall of Mycobacterium tuberculosis. J Proteome Res, 2010, 9(11):5816-5826. doi: 10.1021/pr1005873.
doi: 10.1021/pr1005873 pmid: 20825248 |
| [11] |
Brennan PJ. Structure of mycobacteria: recent developments in defining cell wall carbohydrates and proteins. Rev Infect Dis, 1989, 11 Suppl 2: S420-S430. doi: 10.1093/clinids/11.supplement_2.s420.
doi: 10.1093/clinids/11.supplement_2.s420 |
| [12] |
Parra M, Pickett T, Delogu G, et al. The mycobacterial heparin-binding hemagglutinin is a protective antigen in the mouse aerosol challenge model of tuberculosis. Infect Immun, 2004, 72(12):6799-6805. doi: 10.1128/IAI.72.12.6799-6805.2004.
doi: 10.1128/IAI.72.12.6799-6805.2004 URL |
| [13] |
Verwaerde C, Debrie AS, Dombu C, et al. HBHA vaccination may require both Th1 and Th17 immune responses to protect mice against tuberculosis. Vaccine, 2014, 32(47):6240-6250. doi: 10.1016/j.vaccine.2014.09.024.
doi: 10.1016/j.vaccine.2014.09.024 pmid: 25252198 |
| [14] |
Alteri CJ, Xicohténcatl-Cortes J, Hess S, et al. Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A, 2007, 104(12):5145-5150. doi: 10.1073/pnas.0602304104.
doi: 10.1073/pnas.0602304104 URL |
| [15] |
Wong KW. The Role of ESX-1 in Mycobacterium tuberculosis Pathogenesis. Microbiol Spectr, 2017, 5(3). doi: 10.1128/microbiolspec.TBTB2-0001-2015.
doi: 10.1128/microbiolspec.TBTB2-0001-2015 |
| [16] |
Andersen P. The T cell response to secreted antigens of Mycobacterium tuberculosis. Immunobiology, 1994, 191(4/5):537-547. doi: 10.1016/s0171-2985(11)80460-2.
doi: 10.1016/s0171-2985(11)80460-2 URL |
| [17] |
Kuo CJ, Ptak CP, Hsieh CL, et al. Elastin, a novel extracellular matrix protein adhering to mycobacterial antigen 85 complex. J Biol Chem, 2013, 288(6):3886-3896. doi: 10.1074/jbc.M112.415679.
doi: 10.1074/jbc.M112.415679 URL |
| [18] |
Kamath AB, Woodworth J, Xiong X, et al. Cytolytic CD8+ T cells recognizing CFP10 are recruited to the lung after Mycobacterium tuberculosis infection. J Exp Med, 2004, 200(11):1479-1489. doi: 10.1084/jem.20041690.
doi: 10.1084/jem.20041690 URL |
| [19] |
Skjøt RL, Brock I, Arend SM, et al. Epitope mapping of the immunodominant antigen TB10.4 and the two homologous proteins TB10.3 and TB12.9, which constitute a subfamily of the esat-6 gene family. Infect Immun, 2002, 70(10):5446-5453. doi: 10.1128/IAI.70.10.5446-5453.2002.
doi: 10.1128/IAI.70.10.5446-5453.2002 URL |
| [20] |
Bekker LG, Dintwe O, Fiore-Gartland A, et al. A phase 1b randomized study of the safety and immunological responses to vaccination with H4:IC31, H56:IC31, and BCG revaccination in Mycobacterium tuberculosis-uninfected adolescents in Cape Town, South Africa. EClinicalMedicine, 2020, 21:100313. doi: 10.1016/j.eclinm.2020.100313.
doi: 10.1016/j.eclinm.2020.100313 URL |
| [21] | 刘忠泉, 张宗德, 邢爱英, 等. 结核分枝杆菌休眠复苏期与活跃期的差异表达基因分析. 中华结核和呼吸杂志, 2008, 31(6):442-447. |
| [22] |
Xin Q, Niu H, Li Z, et al. Subunit vaccine consisting of multi-stage antigens has high protective efficacy against Mycobacterium tuberculosis infection in mice. PLoS one, 2013, 8(8):e72745. doi: 10.1371/journal.pone.0072745.
doi: 10.1371/journal.pone.0072745 URL |
| [23] |
Li F, Kang H, Li J, et al. Subunit vaccines consisting of antigens from dormant and replicating bacteria show promising therapeutic effect against Mycobacterium Bovis BCG latent infection. Scand J Immunol, 2017, 85(6):425-432. doi: 10.1111/sji.12556.
doi: 10.1111/sji.12556 pmid: 28426145 |
| [24] |
Pheiffer C, Betts J, Lukey P, et al. Protein expression in Mycobacterium tuberculosis differs with growth stage and strain type. Clin Chem Lab Med, 2002, 40(9):869-875. doi: 10.1515/CCLM.2002.154.
doi: 10.1515/CCLM.2002.154 pmid: 12435102 |
| [25] |
Andersen P. Vaccine strategies against latent tuberculosis infection. Trends Microbiol, 2007, 15(1):7-13. doi: 10.1016/j.tim.2006.11.008.
doi: 10.1016/j.tim.2006.11.008 pmid: 17141504 |
| [26] |
Niu H, Hu L, Li Q, et al. Construction and evaluation of a multistage Mycobacterium tuberculosis subunit vaccine candidate Mtb10.4-HspX. Vaccine, 2011, 29(51):9451-9458. doi: 10.1016/j.vaccine.2011.10.032.
doi: 10.1016/j.vaccine.2011.10.032 URL |
| [27] |
Niu H, Peng J, Bai C, et al. Multi-Stage Tuberculosis Subunit Vaccine Candidate LT69 Provides High Protection against Mycobacterium tuberculosis Infection in Mice. PLoS One, 2015, 10(6):e0130641. doi: 10.1371/journal.pone.0130641.
doi: 10.1371/journal.pone.0130641 URL |
| [28] |
Liu X, Peng J, Hu L, et al. A multistage Mycobacterium tuberculosis subunit vaccine LT70 including latency antigen Rv2626c induces long-term protection against tuberculosis. Hum Vaccin Immunother, 2016, 12(7):1670-1677. doi: 10.1080/21645515.2016.1141159.
doi: 10.1080/21645515.2016.1141159 |
| [29] |
Behr MA, Wilson MA, Gill WP, et al. Comparative genomics of BCG vaccines by whole-genome DNA microarray. Science, 1999, 284(5419):1520-1523. doi: 10.1126/science.284.5419.1520.
doi: 10.1126/science.284.5419.1520 pmid: 10348738 |
| [30] |
Abdallah AM, Behr MA. Evolution and Strain Variation in BCG. Adv Exp Med Biol, 2017, 1019:155-169. doi: 10.1007/978-3-319-64371-7_8.
doi: 10.1007/978-3-319-64371-7_8 pmid: 29116634 |
| [31] |
Zom GG, Khan S, Filippov DV, et al. TLR Ligand-peptide conjugate vaccines: toward clinical application. Adv Immunol, 2012, 114:177-201. doi: 10.1016/B978-0-12-396548-6.00007-X.
doi: 10.1016/B978-0-12-396548-6.00007-X |
| [32] |
Toussi DN, Massari P. Immune adjuvant effect of molecularly-defined Toll-like receptor ligands. Vaccines (Basel), 2014, 2(2):323-353. doi: 10.3390/vaccines2020323.
doi: 10.3390/vaccines2020323 |
| [33] |
Olafsdottir TA, Lingnau K, Nagy E, et al. IC31, a two-component novel adjuvant mixed with a conjugate vaccine enhances protective immunity against pneumococcal disease in neonatal mice. Scand J Immunol, 2009, 69(3):194-202. doi: 10.1111/j.1365-3083.2008.02225.x.
doi: 10.1111/j.1365-3083.2008.02225.x pmid: 19281531 |
| [34] |
Fritz JH, Brunner S, Birnstiel ML, et al. The artificial antimicrobial peptide KLKLLLLLKLK induces predominantly a TH2-type immune response to co-injected antigens. Vaccine, 2004, 22(25/26):3274-3284. doi: 10.1016/j.vaccine.2004.03.007.
doi: 10.1016/j.vaccine.2004.03.007 URL |
| [35] |
Didierlaurent AM, Laupèze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines, 2017, 16(1):55-63. doi: 10.1080/14760584.2016.1213632.
doi: 10.1080/14760584.2016.1213632 pmid: 27448771 |
| [36] |
Baldridge JR, McGowan P, Evans JT, et al. Taking a Toll on human disease: Toll-like receptor 4 agonists as vaccine adjuvants and monotherapeutic agents. Expert Opin Biol Ther, 2004, 4(7):1129-1138. doi: 10.1517/14712598.4.7.1129.
doi: 10.1517/14712598.4.7.1129 pmid: 15268679 |
| [37] |
Coler RN, Bertholet S, Moutaftsi M, et al. Development and characterization of synthetic glucopyranosyl lipid adjuvant system as a vaccine adjuvant. PLoS One, 2011, 6(1):e16333. doi: 10.1371/journal.pone.0016333.
doi: 10.1371/journal.pone.0016333 URL |
| [38] |
Bode C, Zhao G, Steinhagen F, et al. CpG DNA as a vaccine adjuvant. Expert Rev Vaccines, 2011, 10(4):499-511. doi: 10.1586/erv.10.174.
doi: 10.1586/erv.10.174 URL |
| [39] |
Liu X, Da Z, Wang Y, et al. A novel liposome adjuvant DPC mediates Mycobacterium tuberculosis subunit vaccine well to induce cell-mediated immunity and high protective efficacy in mice. Vaccine, 2016, 34(11):1370-1378. doi: 10.1016/j.vaccine.2016.01.049.
doi: 10.1016/j.vaccine.2016.01.049 URL |
| [40] | 何娟娟, 胡丽娜, 刘勋, 等. LT70-DPC结核亚单位疫苗安全性的初步评价. 中国生物制品学杂志, 2017, 30(1):1-4. |
| [41] |
Van Dis E, Sogi KM, Rae CS, et al. STING-Activating Adjuvants Elicit a Th17 Immune Response and Protect against Mycobacterium tuberculosis Infection. Cell Rep, 2018, 23(5):1435-1447. doi: 10.1016/j.celrep.2018.04.003.
doi: 10.1016/j.celrep.2018.04.003 URL |
| [42] |
卢锦标, 赵爱华, 王国治, 等. 结核病新疫苗临床研究进展. 中华结核和呼吸杂志, 2019, 42(10):783-790. doi: 10.3760/cma.j.issn.1001-0939.2019.10.015.
doi: 10.3760/cma.j.issn.1001-0939.2019.10.015 |
| [43] |
Day TA, Penn-Nicholson A, Luabeya AKK, et al. Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Respir Med, 2021, 9(4):373-386. doi: 10.1016/S2213-2600(20)30319-2.
doi: 10.1016/S2213-2600(20)30319-2 URL |
| [44] |
Tkachuk AP, Bykonia EN, Popova LI, et al. Safety and Immunogenicity of the GamTBvac, the Recombinant Subunit Tuberculosis Vaccine Candidate: A Phase Ⅱ, Multi-Center, Double-Blind, Randomized, Placebo-Controlled Study. Vaccines (Basel), 2020, 8(4):652. doi: 10.3390/vaccines8040652.
doi: 10.3390/vaccines8040652 |
| [45] |
Suliman S, Luabeya AKK, Geldenhuys H, et al. Dose Optimization of H56:IC31 Vaccine for Tuberculosis-Endemic Populations. A Double-Blind, Placebo-controlled, Dose-Selection Trial. Am J Respir Crit Care Med, 2019, 199(2):220-231. doi: 10.1164/rccm.201802-0366OC.
doi: 10.1164/rccm.201802-0366OC URL |
| [46] |
Van Der Meeren O, Hatherill M, Nduba V, et al. Phase 2b Controlled Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2018, 379(17):1621-1634. doi: 10.1056/NEJMoa1803484.
doi: 10.1056/NEJMoa1803484 URL |
| [47] |
Ullah I, Bibi S, Ul Haq I, et al. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01E and MVA85A. Front Immunol, 2020, 11:1806. doi: 10.3389/fimmu.2020.01806.
doi: 10.3389/fimmu.2020.01806 URL |
| [48] |
Tait DR, Hatherill M, Van Der Meeren O, et al. Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2019, 381(25):2429-2439. doi: 10.1056/NEJMoa1909953.
doi: 10.1056/NEJMoa1909953 URL |
| [49] |
Kaveh DA, Garcia-Pelayo MC, Hogarth PJ. Persistent BCG bacilli perpetuate CD4 T effector memory and optimal protection against tuberculosis. Vaccine, 2014, 32(51):6911-6918. doi: 10.1016/j.vaccine.2014.10.041.
doi: 10.1016/j.vaccine.2014.10.041 URL |
| [50] |
Sallusto F, Lanzavecchia A, Araki K, et al. From vaccines to memory and back. Immunity, 2010, 33(4):451-463. doi: 10.1016/j.immuni.2010.10.008.
doi: 10.1016/j.immuni.2010.10.008 URL |
| [51] |
Billeskov R, Elvang TT, Andersen PL, et al. The HyVac4 subunit vaccine efficiently boosts BCG-primed anti-mycobacterial protective immunity. PLoS One, 2012, 7(6):e39909. doi: 10.1371/journal.pone.0039909.
doi: 10.1371/journal.pone.0039909 URL |
| [52] |
Aagaard C, Hoang T, Dietrich J, et al. A multistage tuberculosis vaccine that confers efficient protection before and after exposure. Nat Med, 2011, 17(2):189-194. doi: 10.1038/nm.2285.
doi: 10.1038/nm.2285 pmid: 21258338 |
| [53] |
Lin PL, Dietrich J, Tan E, et al. The multistage vaccine H56 boosts the effects of BCG to protect cynomolgus macaques against active tuberculosis and reactivation of latent Mycobacterium tuberculosis infection. J Clin Invest, 2012, 122(1):303-314. doi: 10.1172/JCI46252.
doi: 10.1172/JCI46252 URL |
| [54] |
Sharpe S, White A, Sarfas C, et al. Alternative BCG delivery strategies improve protection against Mycobacterium tuberculosis in non-human primates: Protection associated with mycobacterial antigen-specific CD4 effector memory T-cell populations. Tuberculosis (Edinb), 2016, 101:174-190. doi: 10.1016/j.tube.2016.09.004.
doi: 10.1016/j.tube.2016.09.004 URL |
| [55] |
Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020, 577(7788):95-102. doi: 10.1038/s41586-019-1817-8.
doi: 10.1038/s41586-019-1817-8 URL |
| [56] |
Barclay WR, Anacker RL, Brehmer W, et al. Aerosol-Induced Tuberculosis in Subhuman Primates and the Course of the Disease After Intravenous BCG Vaccination. Infect Immun, 1970, 2(5):574-582. doi: 10.1128/iai.2.5.574-582.1970.
doi: 10.1128/iai.2.5.574-582.1970 pmid: 16557880 |
| [57] |
Luo Y, Jiang W, Da Z, et al. Subunit vaccine candidate AMM down-regulated the regulatory T cells and enhanced the protective immunity of BCG on a suitable schedule. Scand J Immunol, 2012, 75(3):293-300. doi: 10.1111/j.1365-3083.2011.02666.x.
doi: 10.1111/j.1365-3083.2011.02666.x pmid: 22117839 |
| [58] |
Singh AK, Gupta UD. Animal models of tuberculosis: Lesson learnt. Indian J Med Res, 2018, 147(5):456-463. doi: 10.4103/ijmr.IJMR_554_18.
doi: 10.4103/ijmr.IJMR_554_18 URL |
| [59] |
Jacobs AJ, Mongkolsapaya J, Screaton GR, et al. Antibodies and tuberculosis. Tuberculosis (Edinb), 2016, 101:102-113. doi: 10.1016/j.tube.2016.08.001.
doi: 10.1016/j.tube.2016.08.001 URL |
| [1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
| [2] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
| [3] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
| [4] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
| [5] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
| [6] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
| [7] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
| [8] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
| [9] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
| [10] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
| [11] | 尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. |
| [12] | 陈玉杰, 王玲华, 程晓艳, 李慧圆. 医护人员结核分枝杆菌潜伏感染研究进展[J]. 中国防痨杂志, 2024, 46(12): 1541-1547. |
| [13] | 何静, 张忠法. 肺结核患者混合感染其他病原体的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1566-1572. |
| [14] | 黎超凡, 陈志. 动物模型和3D细胞模型在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(12): 1527-1534. |
| [15] | 王宇津, 初乃惠, 聂文娟. 康替唑胺治疗结核病的研究进展[J]. 中国防痨杂志, 2024, 46(11): 1395-1399. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
京公网安备11010202007215号
ip访问总数: ip当日访问总数: 当前在线人数:
本作品遵循Creative Commons Attribution 3.0 License授权许可