中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (1): 6-11.doi: 10.3969/j.issn.1000-6621.2021.01.003
中国防痨协会
收稿日期:
2020-12-14
出版日期:
2021-01-10
发布日期:
2021-01-12
基金资助:
Chinese Antituberculosis Association
Received:
2020-12-14
Online:
2021-01-10
Published:
2021-01-12
摘要:
结核病是严重危害人类健康的传染性疾病之一,是全球单一传染病致死的十大死亡原因之一。2020年全球结核病研究领域学者做出了诸多努力,在结核病基础、诊断、治疗和预防等方面研究均有很多突破。这些突破给结核病防治科技工作者带来了很多的启发和思路,也为临床治疗带来了更多的希望,例如:结核分枝杆菌Sulfolipid-1的致咳机制研究带来了控制结核分枝杆菌传染的新思路;M72/AS01E疫苗的良好保护效果让我们看到继卡介苗之后的新希望;Nix-TB的研究结果为复治或难治耐多药/广泛耐药结核病(MDR/XDR-TB)患者带来了新的曙光;mRNA标记物等新型诊断方法研究也在不断取得进步。为了提高全国结核病防治人员的诊疗能力,及时了解全球结核病研究在新技术、新方法、新理念和新药物研发上的突破,中国防痨协会组织专家对2019年10月至2020年10月于国际上发表的重要文献进行解读,以期为推动我国结核病领域研究工作做出贡献。
中国防痨协会. 结核病领域研究进展(2020年度)[J]. 中国防痨杂志, 2021, 43(1): 6-11. doi: 10.3969/j.issn.1000-6621.2021.01.003
Chinese Antituberculosis Association. Tuberculosis research progress in 2020[J]. Chinese Journal of Antituberculosis, 2021, 43(1): 6-11. doi: 10.3969/j.issn.1000-6621.2021.01.003
[1] |
Moreira-Teixeira L, Tabone O, Graham CM, et al. Mouse transcriptome reveals potential signatures of protection and pathogenesis in human tuberculosis. Nat Immunol, 2020,21(4):464-476. doi: 10.1038/s41590-020-0610-z.
doi: 10.1038/s41590-020-0610-z URL pmid: 32205882 |
[2] | Plumlee CR, Duffy FJ, Gern BH, et al. Ultra-low Dose Aerosol Infection of Mice with Mycobacterium tuberculosis More Closely Models Human Tuberculosis[J/OL]. Cell Host Microbe, 2020[2020-12-14]. doi: 10.1016/j.chom.2020.10.003.Online ahead of print. |
[3] |
Wang L, Wu J, Li J, et al. Host-mediated ubiquitination of a mycobacterial protein suppresses immunity. Nature, 2020,577(7792):682-688. doi: 10.1038/s41586-019-1915-7.
doi: 10.1038/s41586-019-1915-7 URL pmid: 31942069 |
[4] |
Huang H, Wang C, Rubelt F, et al. Analyzing the Mycobacterium tuberculosis immune response by T-cell receptor clustering with GLIPH2 and genome-wide antigen screening. Nat Biotechnol, 2020,38(10):1194-1202. doi: 10.1038/s41587-020-0505-4.
doi: 10.1038/s41587-020-0505-4 URL pmid: 32341563 |
[5] |
Khan N, Downey J, Sanz J, et al. M.tuberculosis Reprograms Hematopoietic Stem Cells to Limit Myelopoiesis and Impair Trained Immunity. Cell, 2020, 183(3): 752-770.e22. doi: 10.1016/j.cell.2020.09.062.
doi: 10.1016/j.cell.2020.09.062 URL pmid: 33125891 |
[6] |
Ji DX, Yamashiro LH, Chen KJ, et al. Type Ⅰ interferon-driven susceptibility to Mycobacterium tuberculosis is mediated by IL-1Ra. Nat Microbiol, 2019,4(12):2128-2135. doi: 10.1038/s41564-019-0578-3.
doi: 10.1038/s41564-019-0578-3 URL pmid: 31611644 |
[7] |
Scheuermann L, Pei G, Domaszewska T, et al. Platelets Restrict the Oxidative Burst in Phagocytes and Facilitate Primary Progressive Tuberculosis. Am J Respir Crit Care Med, 2020,202(5):730-744. doi: 10.1164/rccm.201910-2063OC.
doi: 10.1164/rccm.201910-2063OC URL pmid: 32421376 |
[8] |
Wang Q, Boshoff HIM, Harrison JR, et al. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science, 2020,367(6482):1147-1151. doi: 10.1126/science.aav5912.
doi: 10.1126/science.aav5912 URL pmid: 32139546 |
[9] |
Rempel S, Gati C, Nijland M, et al. A mycobacterial ABC transporter mediates the uptake of hydrophilic compounds. Nature, 2020,580(7803):409-412. doi: 10.1038/s41586-020-2072-8.
doi: 10.1038/s41586-020-2072-8 URL |
[10] |
Zhang L, Zhao Y, Gao Y, et al. Structures of cell wall arabinosyltransferases with the anti-tuberculosis drug ethambutol. Science, 2020,368:1211-1219. doi: 10.1126/science.aba9102.
doi: 10.1126/science.aba9102 URL pmid: 32327601 |
[11] | Guo H, Courbon GM, Bueler SA, et al. Structure of mycobacterial ATP synthase bound to the tuberculosis drug bed-aquiline[J/OL]. Nature, 2020[2020-12-14]. doi: 10.1038/s41586-020-3004-3. Online ahead of print. |
[12] |
Gupta RK, Turner CT, Venturini C, et al. Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med, 2020,8(4):395-406. doi: 10.1016/s2213-2600(19)30282-6.
doi: 10.1016/S2213-2600(19)30282-6 URL pmid: 31958400 |
[13] |
Turner CT, Gupta RK, Tsaliki E, et al. Blood transcriptional biomarkers for active pulmonary tuberculosis in a high-burden setting: a prospective, observational, diagnostic accuracy study. Lancet Respir Med, 2020,8(4):407-419. doi: 10.1016/s2213-2600(19)30469-2.
doi: 10.1016/S2213-2600(19)30469-2 URL pmid: 32178775 |
[14] |
Ahmad R, Xie L, Pyle M, et al. A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough. Sci Transl Med, 2019, 11(515): eaaw8287. doi:10.1126/scitranslmed.aaw8287.
doi: 10.1126/scitranslmed.aaw8287 URL pmid: 31645455 |
[15] |
Eloi P, Nascimento GA, Córdula C, et al. Toward a point-of-care diagnostic for specific detection of Mycobacterium tuberculosis from sputum samples. Tuberculosis (Edinb), 2020,121:101919. doi: 10.1016/j.tube.2020.101919.
doi: 10.1016/j.tube.2020.101919 URL |
[16] |
Mishra H, Reeve BWP, Palmer Z, et al. Xpert MTB/RIF Ultra and Xpert MTB/RIF for diagnosis of tuberculosis in an HIV-endemic setting with a high burden of previous tuberculosis: a two-cohort diagnostic accuracy study. The Lancet Respiratory Medicine, 2020,8:368-382. doi: 10.1016/s2213-2600(19)30370-4.
doi: 10.1016/S2213-2600(19)30370-4 URL pmid: 32066534 |
[17] | Feuerriegel S, Kohl TA, Utpatel C, et al. Rapid genomic first- and second-line drug resistance prediction from clinical Mycobacterium tuberculosis specimens using Deeplex®-MycTB[J/OL]. Eur Respir J, 2020[2020-12-14]. doi: 1183/13993003.01796-2020. |
[18] |
Divala TH, Fielding KL, Kandulu C, et al. Utility of broad-spectrum antibiotics for diagnosing pulmonary tuberculosis in adults: a systematic review and meta-analysis. Lancet Infect Dis, 2020,20(9):1089-1098. doi: 10.1016/s1473-3099(20)30143-2.
doi: 10.1016/S1473-3099(20)30143-2 URL pmid: 32437700 |
[19] |
Ouchi Y, Mukai T, Koide K, et al. WQ-3810: A new fluoroquinolone with a high potential against fluoroquinolone-resis-tant Mycobacterium tuberculosis. Tuberculosis (Edinb), 2020,120:101891. doi: 10.1016/j.tube.2019.101891.
doi: 10.1016/j.tube.2019.101891 URL |
[20] |
de Jager VR, Dawson R, van Niekerk C, et al. Telacebec (Q203), a New Antituberculosis Agent. N Engl J Med, 2020,382(13):1280-1281. doi: 10.1056/NEJMc1913327.
doi: 10.1056/NEJMc1913327 URL pmid: 32212527 |
[21] |
Abidi S, Achar J, Assao Neino MM, et al. Standardised shorter regimens versus individualised longer regimens for rifampin- or multidrug-resistant tuberculosis. Eur Respir J, 2020,55(3):1901467. doi: 10.1183/13993003.01467-2019.
doi: 10.1183/13993003.01467-2019 URL pmid: 31862767 |
[22] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020,382(10):893-902. doi: 10.1056/NEJMoa1901814.
doi: 10.1056/NEJMoa1901814 URL pmid: 32130813 |
[23] | Franke MF, Khan P, Hewison C, et al. Culture Conversion in Patients Treated with Bedaquiline and/or Delamanid: A Prospective Multi-country Study[J/OL]. Am J Respir Crit Care Med, 2020[2020-12-14]. doi: 10.1164/rccm.202001-0135OC. Online ahead of print. |
[24] |
Olayanju O, Esmail A, Limberis J, et al. A regimen containing bedaquiline and delamanid compared to bedaquiline in patients with drug-resistant tuberculosis. Eur Respir J, 2020,55(1):1901181. doi: 10.1183/13993003.01181-2019.
doi: 10.1183/13993003.01181-2019 URL pmid: 31619478 |
[25] |
Blanc FX, Badje AD, Bonnet M, et al. Systematic or Test-Guided Treatment for Tuberculosis in HIV-Infected Adults. N Engl J Med, 2020,382(25):2397-2410. doi: 10.1056/NEJMoa1910708.
doi: 10.1056/NEJMoa1910708 URL pmid: 32558469 |
[26] |
Ordonez AA, Wang H, Magombedze G, et al. Dynamic imaging in patients with tuberculosis reveals heterogeneous drug exposures in pulmonary lesions. Nat Med, 2020,26(4):529-534. doi: 10.1038/s41591-020-0770-2.
doi: 10.1038/s41591-020-0770-2 URL pmid: 32066976 |
[27] |
Ravenscroft L, Kettle S, Persian R, et al. Video-observed therapy and medication adherence for tuberculosis patients: randomised controlled trial in Moldova. Eur Respir J, 2020,56(2):2000493. doi: 10.1183/13993003.00493-2020.
doi: 10.1183/13993003.00493-2020 URL pmid: 32381495 |
[28] |
Schrager LK, Vekemens J, Drager N, et al. The status of tuberculosis vaccine development. Lancet Infect Dis, 2020,20(3):e28-e37. doi: 10.1016/S1473-3099(19)30625-5.
doi: 10.1016/S1473-3099(19)30625-5 URL pmid: 32014117 |
[29] |
Tait DR, Hatherill M, Van Der Meeren O, et al. Final Analysis of a Trial of M72/AS01E Vaccine to Prevent Tuberculosis. N Engl J Med, 2019,381(25):2429-2439. doi: 10.1056/NEJMoa1909953.
doi: 10.1056/NEJMoa1909953 URL pmid: 31661198 |
[30] |
Darrah PA, Zeppa JJ, Maiello P, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature, 2020,577(7788):95-102. doi: 10.1038/s41586-019-1817-8.
doi: 10.1038/s41586-019-1817-8 URL pmid: 31894150 |
[31] |
Gupta RK, Calderwood CJ, Yavlinsky A, et al. Discovery and validation of a personalized risk predictor for incident tuberculosis in low transmission settings. Nat Med, 2020,26(12):1941-1949. doi: 10.1038/s41591-020-1076-0.
doi: 10.1038/s41591-020-1076-0 URL pmid: 33077958 |
[32] | World Health Organization. WHO consolidated guidelines on tuberculosis preventive treatment. Geneva: World Health Organization, 2020. |
[33] |
Huang CC, Becerra MC, Calderon R, et al. Isoniazid Preventive Therapy in Contacts of Multidrug-Resistant Tuberculosis. Am J Respir Crit Care Med, 2020,202(8):1159-1168. doi: 10.1164/rccm.201908-1576OC.
doi: 10.1164/rccm.201908-1576OC URL pmid: 32551948 |
[34] |
Ganmaa D, Uyanga B, Zhou X, et al. Vitamin D Supplements for Prevention of Tuberculosis Infection and Disease. N Engl J Med, 2020,383:359-368. doi: 10.1056/NEJMoa1915176.
doi: 10.1056/NEJMoa1915176 URL pmid: 32706534 |
[35] |
Theron G, Limberis J, Venter R, et al. Bacterial and host determinants of cough aerosol culture positivity in patients with drug-resistant versus drug-susceptible tuberculosis. Nat Med, 2020,26(9):1435-1443. doi: 10.1038/s41591-020-0940-2.
doi: 10.1038/s41591-020-0940-2 URL pmid: 32601338 |
[36] |
Ruhl CR, Pasko BL, Khan HS, et al. Mycobacterium tuberculosis Sulfolipid-1 Activates Nociceptive Neurons and Induces Cough. Cell, 2020, 181(2): 293-305.e11. doi: 10.1016/j.cell.2020.02.026.
doi: 10.1016/j.cell.2020.02.026 URL pmid: 32142653 |
[1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[2] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[3] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[4] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[5] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[6] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[7] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[8] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[9] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[10] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
[11] | 尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. |
[12] | 何静, 张忠法. 肺结核患者混合感染其他病原体的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1566-1572. |
[13] | 陈玉杰, 王玲华, 程晓艳, 李慧圆. 医护人员结核分枝杆菌潜伏感染研究进展[J]. 中国防痨杂志, 2024, 46(12): 1541-1547. |
[14] | 黎超凡, 陈志. 动物模型和3D细胞模型在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(12): 1527-1534. |
[15] | 王宇津, 初乃惠, 聂文娟. 康替唑胺治疗结核病的研究进展[J]. 中国防痨杂志, 2024, 46(11): 1395-1399. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||