中国防痨杂志 ›› 2024, Vol. 46 ›› Issue (10): 1283-1292.doi: 10.19982/j.issn.1000-6621.20240217
• • 上一篇
收稿日期:
2024-05-28
出版日期:
2024-10-10
发布日期:
2024-09-29
通信作者:
王鹏,Email:基金资助:
Liu Kejun1,2, Zhang Haipeng2, Wang Peng1,2()
Received:
2024-05-28
Online:
2024-10-10
Published:
2024-09-29
Contact:
Wang Peng, Email: Supported by:
摘要:
分枝杆菌感染给全球带来了很大的健康负担,尤其是耐多药结核病(MDR-TB)对公共卫生和卫生安全的威胁,寻找一种有效对抗分枝杆菌感染的方法成为亟待解决的问题。分枝杆菌噬菌体是特异性感染分枝杆菌的病毒,可以通过裂解宿主菌导致其死亡。目前,大量的分枝杆菌噬菌体已被分离和完成全基因组测序,可以帮助我们深入了解噬菌体的遗传多样性和基因组结构,并推动其应用和发展。因此,本文综述了分枝杆菌噬菌体基因组学的一般特征及基因功能与表达,以提供分枝杆菌噬菌体治疗新思路。
中图分类号:
刘珂君, 张海鹏, 王鹏. 分枝杆菌噬菌体基因组学研究概况[J]. 中国防痨杂志, 2024, 46(10): 1283-1292. doi: 10.19982/j.issn.1000-6621.20240217
Liu Kejun, Zhang Haipeng, Wang Peng. Overview of genomic research on Mycobacteriophages[J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1283-1292. doi: 10.19982/j.issn.1000-6621.20240217
表1
分枝杆菌噬菌体簇基因组基因特征
簇 | 亚簇 | 成员 数量 | 平均长度 (bp) | 平均GC %含量 | 平均基 因数量 | 平均tRNA 基因数量 | 簇 | 亚簇 | 成员 数量 | 平均长度 (bp) | 平均GC %含量 | 平均基 因数量 | 平均tRNA 基因数量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 19 | 770 | 51603 | 63.3 | 90.5 | 1.2 | R | 0 | 10 | 71339 | 56.0 | 98 | 0 |
B | 13 | 415 | 68822 | 67.1 | 98.3 | 0 | S | 0 | 19 | 64972 | 63.4 | 107 | 0 |
C | 2 | 188 | 155628 | 64.7 | 230.5 | 32.9 | T | 0 | 7 | 42746 | 66.2 | 61 | - |
D | 2 | 22 | 64789 | 59.6 | 88.8 | 0 | U | 0 | 3 | 66864 | 50.4 | 104 | 1 |
E | 0 | 130 | 75493 | 63.0 | 142.6 | 1.9 | V | 0 | 5 | 77907 | 56.9 | 145.3 | 23.3 |
F | 5 | 237 | 57338 | 61.5 | 104.1 | 0 | W | 0 | 6 | 61013 | 67.5 | - | - |
G | 5 | 70 | 42363 | 66.9 | 62 | 0 | X | 0 | 2 | 88037 | 56.7 | - | - |
H | 2 | 12 | 69127 | 57.3 | 98.7 | 0 | Y | 0 | 4 | 76836 | 66.7 | - | - |
I | 2 | 7 | 50320 | 66.4 | 80.2 | 0 | Z | 0 | 2 | 50807 | 66.0 | - | - |
J | 0 | 43 | 111094 | 60.9 | 235.3 | 1.6 | AA | 0 | 2 | 140785 | 67.4 | - | - |
K | 8 | 185 | 59991 | 66.8 | 93.6 | 0.9 | AB | 0 | 5 | 49672 | 58.6 | 71 | 0 |
L | 5 | 76 | 74381 | 58.9 | 124.7 | 10.3 | AC | 0 | 4 | 70029 | 49.8 | - | - |
M | 3 | 20 | 81622 | 61.3 | 141.3 | 18.7 | AD | 0 | 4 | 64670 | 66.1 | 93 | 0 |
N | 0 | 43 | 42941 | 66.2 | 68.9 | 0 | AE | 0 | 3 | 71540 | 58.8 | - | - |
O | 0 | 28 | 71124 | 65.4 | 121.1 | 0 | AF | 0 | 2 | 62538 | 65.2 | - | - |
P | 6 | 49 | 47839 | 67.0 | 79.3 | 0 | AG | 0 | 2 | 55047 | 66.0 | - | - |
Q | 0 | 22 | 53835 | 67.4 | 81 | 0 | AH | 0 | 2 | 54800 | 70.4 | - | - |
表2
分枝杆菌噬菌体单胞体基因特征
噬菌体名称 | 宿主菌 | 菌种 | 簇 | 基因长度(bp) | GC%含量 | 发现年份 | 发现地 |
---|---|---|---|---|---|---|---|
StAugustine | 耻垢分枝杆菌 | mc2155 | 单胞体 | 101031 | 65.7 | 2023 | 佐治亚州,美国 |
P3MA | 脓肿分枝杆菌 | 330 | 单胞体 | 41234 | 63.4 | 2023 | 未知 |
MooMoo | 耻垢分枝杆菌 | mc2155 | 单胞体 | 55178 | 62.0 | 2011 | 肯塔基州,美国 |
LilSpotty | 耻垢分枝杆菌 | mc2155 | 单胞体 | 49798 | 64.7 | 2018 | 加尼福利亚州,美国 |
Kumao | 耻垢分枝杆菌 | mc2155 | 单胞体 | 70373 | 62.1 | 2015 | 宾夕法尼亚州,美国 |
IdentityCrisis | 耻垢分枝杆菌 | mc2155 | 单胞体 | 38341 | 65.0 | 2018 | 佛罗里达州,美国 |
DS6A | 结核分枝杆菌 | H37Rv | 单胞体 | 60588 | 68.4 | 1960 | 未知 |
平均 | - | - | - | 59506 | 64.5 | - | - |
图1
分枝杆菌噬菌体Taheera的基因组结构(来源:Hatfull[9]) 注 图中英文标注为对应基因所编码的蛋白。其中,Terminase:末端酶;Portal:门户蛋白;Protease:蛋白酶;Scaffold:支架;Capsid:衣壳;Major Tail Subunit:主要尾部亚基;Tail Assembly Chaperones:尾部组装伴侣基因;Tape Measure Protein:卷尺测量蛋白;Minor Tail Proteins:次要尾部蛋白;LysinA、LysinB、Holin:裂解盒;Integrase:整合酶;Repressor:阻遏因子;重组系统:RecE:核酸外切酶,RecT:退火蛋白,RuvC:分解酶;HNH:核酸酶相关蛋白
[1] |
Honda JR, Virdi R, Chan ED, et al. Global Environmental Nontuberculous Mycobacteria and Their Contemporaneous Man-Made and Natural Niches. Front Microbiol, 2018, 9:2029. doi:10.3389/fmicb.2018.02029.
pmid: 30214436 |
[2] | 白慧玲, 王进, 王爱华. 医学免疫学与病原生物学. 郑州: 郑州大学出版社, 2008: 252-262. |
[3] | Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med, 2019, 25(5): 730-733. doi:10.1038/s41591-019-0437-z. |
[4] | Raj CV, Ramakrishnan T. Transduction in Mycobacterium smegmatis. Nature, 1970, 228 (5268): 280-281. doi:10.1038/228280b0. |
[5] | Nick JA, Dedrick RM, Gray AL, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185(11): 1860-1874.e12. doi:10.1016/j.cell.2022.04.024. |
[6] |
Hatfull GF, Pedulla ML, Jacobs-Sera D, et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet, 2006, 2(6): e92. doi:10.1371/journal.pgen.0020092.
pmid: 16789831 |
[7] |
Hatfull GF, Cresawn SG, Hendrix RW. Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res Microbiol, 2008, 159(5):332-339. doi:10.1016/j.resmic.2008.04.008.
pmid: 18653319 |
[8] | Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr, 2014, 2(2). doi:10.1128/microbiolspec.MGM2-0032-2013. |
[9] | Hatfull GF. Mycobacteriophages. Microbiol Spectr, 2018, 6(5):10.1128/microbiolspec.GPP3-0026-2018. doi:10.1128/microbiolspec.GPP3-0026-2018. |
[10] |
Hatfull GF, Sarkis GJ. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol, 1993, 7 (3): 395-405. doi:10.1111/j.1365-2958.1993.tb01131.x.
pmid: 8459766 |
[11] | 刘文, 胡巍, 王洪海. 分枝杆菌噬菌体的分子生物学研究进展及其应用. 微生物学通报, 1999, 26 (1):58-62. doi:10.13344/j.microbiol.china.1999.01.020. |
[12] |
Ford ME, Sarkis GJ, Belanger AE, et al. Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol, 1998, 279(1): 143-164. doi:10.1006/jmbi.1997.1610.
pmid: 9636706 |
[13] | 包孟, 付玉荣, 伊正君. 分枝杆菌噬菌体D29 LysinB的表达及生物信息学分析. 中国病原生物学杂志, 2017, 12(2):106-109. doi:10.13350/j.cjpb.170203. |
[14] | Timme TL, Brennan PJ. Induction of bacteriophage from members of the Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum serocomplex. J General mMicrobiol, 1984, 130 (8): 2059-2066. doi:10.1099/00221287-130-8-2059. |
[15] | Jacobs WR Jr, Tuckman M, Bloom BR. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature, 1987, 327 (6122): 532-535. doi:10.1038/327532a0. |
[16] |
Rybniker J, Kramme S, Small PL. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis-application for identification and susceptibility testing. J Med Microbiol, 2006, 55 (Pt 1): 37-42. doi:10.1099/jmm.0.46238-0.
pmid: 16388028 |
[17] |
Jacobs WR Jr, Barletta RG, Udani R, et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science, 1993, 260(5109): 819-822. doi:10.1126/science.8484123.
pmid: 8484123 |
[18] | Ford ME, Stenatrom C, Hendrix RW, et al. Mycobacteriophage TM4: genome structure and gene expression. Tuber Lung Dis, 1998, 79 (2): 63-73. doi:10.1054/tuld.1998.0007. |
[19] | 刘平. 分枝杆菌噬菌体的生物学特性及基因组学研究. 重庆:重庆医科大学, 2012. |
[20] | Fan X, Teng T, Xie J, et al. Biology of a novel mycobacterio-phage, SWU1, isolated from Chinese soil as revealed by genomic characteristics. J Virol, 2012, 86(18):10230-10231. doi:10.1128/JVI.01568-12. |
[21] | 樊祥宇. 分枝杆菌噬菌体的系统生物学研究. 重庆: 西南大学, 2014. |
[22] | 苏胜兵. 分枝杆菌烈性噬菌体的分离鉴定及其裂解酶基因的克隆与序列分析. 长春: 吉林农业大学, 2012. |
[23] |
Fan X, Gao X, Xie J, et al. Complete genome sequence analysis of the novel mycobacteriophage Shandong1. Arch Virol, 2017, 162(12):3903-3905. doi:10.1007/s00705-017-3534-7.
pmid: 28828700 |
[24] | Gong Z, Lv X, Xie J, et al. Genomic and proteomic portrait of a novel mycobacteriophage SWU2 isolated from China. Infect Genet Evol, 2021, 87:104665. doi:10.1016/j.meegid.2020.104665. |
[25] | Pope WH, Bowman CA, Russell DA, et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife, 2015, 4:e06416. doi:10.7554/eLife.06416. |
[26] |
Voronina OL, Kunda MS, Aksenova EI, et al. Mosaic structure of Mycobacterium bovis BCG genomes as a representation of phage sequences’ mobility. BMC Genomics, 2016, 17(Suppl 14): 1009. doi:10.1186/s12864-016-3355-1.
pmid: 28105923 |
[27] | Sinha A, Eniyan K, Bajpai U, et al. Characterization and genome analysis of B 1 sub-cluster mycobacteriophage PDRPxv. Virus Res, 2020, 279:197884. doi:10.1016/j.virusres.2020.197884. |
[28] | Hatfull GF, Jacobs-Sera D, Lawrence JG, et al. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol, 2010, 397 (1): 119-143. doi:10.1016/j.jmb.2010.01.011. |
[29] |
Hatfull GF. Mycobacteriophages: genes and genomes. Annu Rev Microbiol, 2010, 64:331-356. doi:10.1146/annurev.micro.112408.134233.
pmid: 20528690 |
[30] | Zheng H, Olia AS, Gonen M, et al. A conformational switch in bacteriophage p 22 portal protein primes genome injection. Mol Cell, 2008, 29(3):376-383. doi:10.1016/j.molcel.2007.11.034. |
[31] | Hatfull GF. Mycobacteriophages: From Petri dish to patient. PLoS Pathog, 2022, 18(7):e1010602. doi:10.1371/journal.ppat.1010602. |
[32] |
Garcia M, Pimentel M, Moniz-Pereira J. Expression of Mycobacteriophage Ms6 lysis genes is driven by two sigma(70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J Bacteriol, 2002, 184(11): 3034-3043. doi:10.1128/JB.184.11.3034-3043.2002.
pmid: 12003945 |
[33] | Pham TT, Jacobs-Sera D, Pedulla ML, et al. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology (Reading), 2007, 153(Pt 8): 2711-2723. doi:10.1099/mic.0.2007/008904-0. |
[34] |
Zeynali Kelishomi F, Khanjani S, Fardsanei F, et al. Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. BMC Infect Dis, 2022, 22(1):957. doi:10.1186/s12879-022-07944-9.
pmid: 36550444 |
[35] | Catalão MJ, Pimentel M. Mycobacteriophage Lysis Enzymes: Targeting the Mycobacterial Cell Envelope. Viruses, 2018, 10(8):428. doi:10.3390/v10080428. |
[36] |
Yang H, Yu J, Wei H. Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol, 2014, 5:542. doi:10.3389/fmicb.2014.00542.
pmid: 25360133 |
[37] | 宋磊. 分枝杆菌噬菌体L5 LysA、LysB的表达及活性研究. 长春: 吉林农业大学, 2014. |
[38] |
Kamilla S, Jain V. Mycobacteriophage D29 holin C-terminal region functionally assists in holin aggregation and bacterial cell death. FEBS J, 2016, 283 (1): 173-190. doi:10.1111/febs.13565.
pmid: 26471254 |
[39] | Catalão MJ, Gil F, Moniz-Pereira J, et al. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev, 2013, 37(4): 554-571. doi:10.1111/1574-6976.12006. |
[40] | Peña CE, Kahlenberg JM, Hatfull GF. Assembly and activation of site-specific recombination complexes. Proc Natl Acad Sci U S A, 2000, 97(14): 7760-7765. doi:10.1073/pnas.140014297. |
[41] | 申严杰, 胡昌华, 王洪海, 等. 分枝杆菌噬菌体整合及裂解的分子机理. 微生物学报, 2005, 45(5):808-811. doi:10.13343/j.cnki.wsxb.2005.05.034. |
[42] | Kusano K, Takahashi NK, Yoshikura H, et al. Involvement of RecE exonuclease and RecT annealing protein in DNA double-strand break repair by homologous recombination. Gene, 1994, 138(1/2):17-25. doi:10.1016/0378-1119(94)90778-1. |
[43] |
Górecka KM, Krepl M, Szlachcic A, et al. RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient resolution. Nat Commun, 2019, 10(1):4102. doi:10.1038/s41467-019-11900-8.
pmid: 31506434 |
[44] |
Smith MC, Thorpe HM. Diversity in the serine recombinases. Mol Microbiol, 2002, 44(2): 299-307. doi:10.1046/j.1365-2958.2002.02891.x.
pmid: 11972771 |
[45] |
Hatfull GF. Actinobacteriophages: Genomics, Dynamics, and Applications. Annu Rev Virol, 2020, 7(1):37-61. doi:10.1146/annurev-virology-122019-070009.
pmid: 32991269 |
[46] |
Ojha A, Anand M, Bhatt A, et al. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell, 2005, 123(5): 861-873. doi:10.1016/j.cell.2005.09.012.
pmid: 16325580 |
[47] |
Bhawsinghka N, Dutta A, Mukhopadhyay J, et al. A transcriptomic analysis of the mycobacteriophage D29 genome reveals the presence of novel stoperator-associated promoters in its right arm. Microbiology (Reading), 2018, 164(9): 1168-1179. doi:10.1099/mic.0.000693.
pmid: 30024363 |
[48] |
Li X, Long X, Chen L, et al. Mycobacterial phage TM4 requires a eukaryotic-like Ser/Thr protein kinase to silence and escape anti-phage immunity. Cell Host Microbe, 2023, 31(9): 1469-1480.e4. doi:10.1016/j.chom.2023.07.005.
pmid: 37567169 |
[49] | 丛聪. 沙门菌裂解性噬菌体的筛选、基因组学分析及其在肉鸡产品抗菌中的应用. 大连: 大连理工大学, 2021. doi:10.26991/d.cnki.gdllu.2021.004986. |
[50] | 邬亭亭. 分枝杆菌噬菌体鸡尾酒制剂应用于耐药结核病治疗的探索性研究. 重庆: 重庆医科大学, 2012. |
[51] |
Łobocka M, Dᶏbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs, 2021, 35(3): 255-280. doi:10.1007/s40259-021-00480-z.
pmid: 33881767 |
[52] | 樊祥宇, 谢建平. 分枝杆菌噬菌体重组系统及其应用. 中国生物工程杂志, 2012, 32(9):101-106. doi:10.13523/j.cb.20120916. |
[53] |
Jacobs WR Jr, Snapper SB, Lugosi L, et al. Development of BCG as a recombinant vaccine vehicle. Curr Top Microbiol Immunol, 1990, 155: 153-160. doi:10.1007/978-3-642-74983-4_11.
pmid: 2407431 |
[54] | Freeman KG, Wetzel KS, Zhang Y, et al. A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display. Microorganisms, 2021, 9(12): 2414. doi:10.3390/microorganisms9122414. |
[55] | Mitsunaka S, Yamazaki K, Pramono AK, et al. Synthetic engineering and biological containment of bacteriophages. Proc Natl Acad Sci U S A, 2022, 119(48): e2206739119. doi:10.1073/pnas.2206739119. |
[56] |
Manoutcharian K. Bacteriophages as tools for vaccine and drug development. Expert Rev Vaccines, 2005, 4(1): 5-7. doi:10.1586/14760584.4.1.5.
pmid: 15757465 |
[57] | Harada LK, Silva EC, Campos WF, et al. Biotechnological applications of bacteriophages: State of the art. Microbiol Res, 2018, 212-213: 38-58. doi:10.1016/j.micres.2018.04.007. |
[58] | Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol, 2007, 73(1):347-352. doi:10.1128/AEM.01616-06. |
[59] | Son JS, Lee SJ, Jun SY, et al. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol, 2010, 86(5): 1439-1449. doi:10.1007/s00253-009-2386-9. |
[60] |
Domenech M, García E, Moscoso M. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother, 2011, 55(9):4144-4148. doi:10.1128/AAC.00492-11.
pmid: 21746941 |
[61] | Briers Y, Walmagh M, Van Puyenbroeck V, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. mBio, 2014, 5(4): e01379-14. doi:10.1128/mBio.01379-14. |
[62] |
Chakraborty P, Bajeli S, Kaushal D, et al. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun, 2021, 12(1):1606. doi:10.1038/s41467-021-21748-6.
pmid: 33707445 |
[63] |
Ackart DF, Lindsey EA, Podell BK, et al. Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimi-dazole-based small molecules. Pathog Dis, 2014, 70 (3): 370-378. doi:10.1111/2049-632X.12143.
pmid: 24478046 |
[1] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[2] | 邱伟霞, 陈丽莉, 徐约丹, 潘宁, 邱霞霞, 郑泓, 金沈洁, 李会娟, 蒋贤高. 海分枝杆菌皮肤感染患者护理一例[J]. 中国防痨杂志, 2025, 47(4): 531-534. |
[3] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[4] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[5] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[6] | 卢海林, 汪文斐, 陶文慧, 林培翀, 陈心春, 邓国防, 谢水祥. 油酸上调围脂滴蛋白2表达增强巨噬细胞对结核分枝杆菌的清除作用[J]. 中国防痨杂志, 2025, 47(1): 72-76. |
[7] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[8] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[9] | 唐灵通, 涂祥俊, 钟涛, 张薇, 杨波, 曾超林, 杨程, 王昌银, 陈莉. 代谢组学在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(S2): 522-527. |
[10] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[11] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[12] | 仲玲珊, 王莉, 张硕, 李楠, 杨晴媛, 丁文龙, 陈星枝, 黄陈翠, 邢志珩. 基于CT图像结合放射组学和语义特征的机器学习模型诊断非结核分枝杆菌肺病和肺结核的研究[J]. 中国防痨杂志, 2024, 46(9): 1042-1049. |
[13] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[14] | 段鸿飞. 非结核分枝杆菌病诊治六十年[J]. 中国防痨杂志, 2024, 46(8): 863-868. |
[15] | 徐春华, 朱士玉, 胡屹, 易可华, 宋灿磊, 王紫纯, 邬勇, 王青, 杨芊茹, 沈鑫. 重组结核杆菌融合蛋白在肺结核密切接触者中筛查结核分枝杆菌感染效果分析[J]. 中国防痨杂志, 2024, 46(8): 897-902. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||