中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (7): 720-726.doi: 10.19982/j.issn.1000-6621.20220103
收稿日期:
2022-03-31
出版日期:
2022-07-10
发布日期:
2022-07-06
通信作者:
潘丽萍
E-mail:panliping2006@163.com
基金资助:
JIA Hong-yan, DONG Jing, ZHANG Zong-de, PAN Li-ping()
Received:
2022-03-31
Online:
2022-07-10
Published:
2022-07-06
Contact:
PAN Li-ping
E-mail:panliping2006@163.com
Supported by:
摘要:
结核病仍然是全球和我国重点防控的传染病之一。尽管目前已将结核分枝杆菌核酸检测阳性纳入结核病确诊依据之一,但临床仍然存在大量病原学阴性的结核病患者,需要依靠免疫学检测技术进行辅助诊断。结核分枝杆菌入侵宿主后引发的免疫病理反应及抗结核免疫应答反应是开发免疫学检测技术的基础,参与免疫应答不同阶段的各类细胞、细胞因子、趋化因子、抗体等都是潜在的免疫学诊断靶标。近年来,基于这些靶标开发了多项免疫学检测新技术,包括γ-干扰素释放试验、新型结核菌素皮肤试验、干扰素诱导蛋白-10(IP-10)检测、γ-干扰素/白细胞介素-2(IFN-γ/IL-2)双因子检测等,为结核分枝杆菌感染和结核病的诊断带来了新的希望。此外,尚有一些处在研发过程的新型蛋白标识物、多功能淋巴细胞等也表现出较好的潜在诊断价值。笔者将对已用于临床的免疫学诊断技术的应用现状及优缺点进行综述,并探讨未来可能进入临床应用的标识物和其他潜在靶标。
中图分类号:
贾红彦, 董静, 张宗德, 潘丽萍. 结核分枝杆菌感染的免疫学检测技术研究进展及临床应用现状[J]. 中国防痨杂志, 2022, 44(7): 720-726. doi: 10.19982/j.issn.1000-6621.20220103
JIA Hong-yan, DONG Jing, ZHANG Zong-de, PAN Li-ping. Progress and clinical application of immunological detection technology for Mycobacterium tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2022, 44(7): 720-726. doi: 10.19982/j.issn.1000-6621.20220103
表1
结核病特异蛋白标识的研究汇总
时间/文献编号 | 标本类型 | 研究技术 | 分子标识 | 期刊名称 |
---|---|---|---|---|
2022[ | 血浆 | MRM-MS | CD14/A2GL/NID1/SCTM1/A1AG1 | EBioMedicine |
2021[ | 唾液 | LC-MS/MS | NAXE/SERPINA3/PSMB6/IGKV1D-33/ SERPINI1 | Tuberculosis |
2020[ | 血清 | iTRAQ | KYAT3/SERPINA1/HP/APOC3 | Proteomics Clin Appl |
2020[ | 血清 | DIA-MS | sCD14/PGLYRP2/FGA | J Cell Mol Med |
2020[ | 淋巴细胞 | GeLC-MS/MS | PSTK | PLoS One |
2020[ | 血浆 | 非标记定量蛋白质组学 | AGP1/ORM2/C9 | Proteomics Clin Appl |
2020[ | 血浆 | 蛋白芯片 | I-TAC/I-309/MIG/Granulysin/FAP/ MEP1B/Furin/LYVE-1 | Thorax |
2020[ | 血浆 | DIA-MS | AMACR/LDHB/RAP1B | Infect Drug Resist |
2020[ | 血浆 | q3D LC-MS | CFHR5/LRG1/CRP/LBP/SAA1 | JCI Insight |
2019[ | 血清 | 蛋白芯片 | C9/IGFBP-2/CD79A/MXRA-7/NrCAM | PLoS Med |
2019[ | 胸腔积液 | iTRAQ | FN/CTSG/LTA4H | Biomark Med |
2018[ | 血浆 | 非标记定量蛋白质组学 | AGP1/ACT/CDH1 | Front Microbiol |
2017[ | 血清 | 蛋白芯片 | SYWC/Kallistatin/C9/Gelsolin/Testican-2/ Aldolase C | J Clin Microbiol |
[1] |
Cohen A, Mathiasen VD, Schön T, et al. The global prevalence of latent tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2019, 54(3):1900655. doi: 10.1183/13993003.00655-2019.
doi: 10.1183/13993003.00655-2019 URL |
[2] |
Gao L, Lu W, Bai L, et al. Latent tuberculosis infection in rural China: baseline results of a population-based, multicentre, prospective cohort study. Lancet Infect Dis, 2015, 15(3):310-319. doi: 10.1016/S1473-3099(14)71085-0.
doi: 10.1016/S1473-3099(14)71085-0 URL |
[3] |
高磊, 张慧, 胡茂桂, 等. 基于多中心调查数据和空间统计模型的全国结核分枝杆菌潜伏感染率估算. 中国防痨杂志, 2022, 44(1):54-59. doi: 10.19982/j.issn.1000-6621.20210661.
doi: 10.19982/j.issn.1000-6621.20210661 |
[4] | 中国疾病预防控制中心. 2018年全国结核病防治工作会议资料汇编. 北京:中国疾病预防控制中心, 2018. |
[5] | World Health Organization. Commercial serodiagnostic testsfor diagnosis of tuberculosis policy statement. Geneva: World Heath Organization, 2011. |
[6] |
张薇, 赵立. 结核分枝杆菌感染的实验室诊断方法及检测技术研究进展. 国际呼吸杂志, 2019, 39(20):1586-1591. doi: 10.3760/cma.j.issn.1673-436X.2019.20.014.
doi: 10.3760/cma.j.issn.1673-436X.2019.20.014 |
[7] |
Lawn SD. Advances in Diagnostic Assays for Tuberculosis. Cold Spring Harb Perspect Med, 2015, 5(12):a017806. doi: 10.1101/cshperspect.a017806.
doi: 10.1101/cshperspect.a017806 |
[8] |
《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础学组和临床学组. 现阶段结核抗体检测在我国临床应用的专家共识. 中国防痨杂志, 2018, 40(1):9-13. doi: 10.3969/j.issn.1000-6621.2018.01.004.
doi: 10.3969/j.issn.1000-6621.2018.01.004 |
[9] |
杨蕾, 曹俊, 卢锦标, 等. 血清学抗体检测菌阴肺结核存在的问题讨论. 中华微生物学和免疫学杂志, 2017, 37(10):785-789. doi: 10.3760/cma.j.issn.0254-5101.2017.10.011.
doi: 10.3760/cma.j.issn.0254-5101.2017.10.011 |
[10] |
Pai M, Zwerling A, Menzies D. Systematic review: T-cell-based assays for the diagnosis of latent tuberculosis infection: an update. Ann Intern Med, 2008, 149(3):177-184. doi: 10.7326/0003-4819-149-3-200808050-00241.
doi: 10.7326/0003-4819-149-3-200808050-00241 URL |
[11] |
Ruhwald M, Aggerbeck H, Gallardo RV, et al. Safety and efficacy of the C-Tb skin test to diagnose Mycobacterium tuberculosis infection, compared with an interferon γ release assay and the tuberculin skin test: a phase 3, double-blind, randomised, controlled trial. Lancet Respir Med, 2017, 5(4):259-268. doi: 10.1016/S2213-2600(16)30436-2.
doi: 10.1016/S2213-2600(16)30436-2 pmid: 28159608 |
[12] |
中国防痨协会, 中国防痨协会学校与儿童结核病防治专业分会, 《中国防痨杂志》编辑委员会. 重组结核杆菌融合蛋白(EC)临床应用专家共识. 中国防痨杂志, 2020, 42(8):761-768. doi: 10.3969/i.issn.1000-6621.2020.08.001.
doi: 10.3969/i.issn.1000-6621.2020.08.001 |
[13] |
中华医学会结核病学分会. 结核分枝杆菌γ-干扰素释放试验及临床应用专家意见(2021年版). 中华结核和呼吸杂志, 2022, 45(2):143-150. doi: 10.3760/cma.j.cn112147-20211110-00794.
doi: 10.3760/cma.j.cn112147-20211110-00794 |
[14] |
Diel R, Loddenkemper R, Nienhaus A. Evidence-based comparison of commercial interferon-gamma release assays for detecting active TB: a metaanalysis. Chest, 2010, 137(4):952-968. doi: 10.1378/chest.09-2350.
doi: 10.1378/chest.09-2350 URL |
[15] |
Diel R, Loddenkemper R, Nienhaus A. Predictive value of interferon-γ release assays and tuberculin skin testing for progression from latent TB infection to disease state: a meta-analysis. Chest, 2012, 142(1):63-75. doi: 10.1378/chest.11-3157.
doi: 10.1378/chest.11-3157 URL |
[16] |
Machingaidze S, Wiysonge CS, Gonzalez-Angulo Y, et al. The utility of an interferon gamma release assay for diagnosis of latent tuberculosis infection and disease in children: a systematic review and meta-analysis. Pediatr Infect Dis J, 2011, 30(8):694-700. doi: 10.1097/INF.0b013e318214b915.
doi: 10.1097/INF.0b013e318214b915 pmid: 21427627 |
[17] |
Zhou XX, Liu YL, Zhai K, et al. Body Fluid Interferon-γ Release Assay for Diagnosis of Extrapulmonary Tuberculosis in Adults: A Systematic Review and Meta-Analysis. Sci Rep, 2015, 5:15284. doi: 10.1038/srep15284.
doi: 10.1038/srep15284 URL |
[18] |
Luo Y, Tan Y, Yu J, et al. The Performance of Pleural Fluid T-SPOT.TB Assay for Diagnosing Tuberculous Pleurisy in China: A Two-Center Prospective Cohort Study. Front Cell Infect Microbiol, 2019, 9:10. doi: 10.3389/fcimb.2019.00010.
doi: 10.3389/fcimb.2019.00010 URL |
[19] |
Wang F, Yu J, Zhou Y, et al. The Use of TB-Specific Antigen/Phytohemagglutinin Ratio for Diagnosis and Treatment Monitoring of Extrapulmonary Tuberculosis. Front Immunol, 2018, 9:1047. doi: 10.3389/fimmu.2018.01047.
doi: 10.3389/fimmu.2018.01047 URL |
[20] |
Pan L, Jia H, Liu F, et al. Risk factors for false-negative T-SPOT.TB assay results in patients with pulmonary and extra-pulmonary TB. J Infect, 2015, 70(4):367-380. doi: 10.1016/j.jinf.2014.12.018.
doi: 10.1016/j.jinf.2014.12.018 URL |
[21] |
Meier NR, Jacobsen M, Ottenhoff THM, et al. A Systematic Review on Novel Mycobacterium tuberculosis Antigens and Their Discriminatory Potential for the Diagnosis of Latent and Active Tuberculosis. Front Immunol, 2018, 9:2476. doi: 10.3389/fimmu.2018.02476.
doi: 10.3389/fimmu.2018.02476 URL |
[22] |
Whitworth HS, Badhan A, Boakye AA, et al. Clinical utility of existing and second-generation interferon-γ release assays for diagnostic evaluation of tuberculosis: an observational cohort study. Lancet Infect Dis, 2019, 19(2):193-202. doi: 10.1016/S1473-3099(18)30613-3.
doi: S1473-3099(18)30613-3 pmid: 30655049 |
[23] |
Pourakbari B, Mamishi S, Benvari S, et al. Comparison of the QuantiFERON-TB Gold Plus and QuantiFERON-TB Gold In-Tube interferon-γ release assays: A systematic review and meta-analysis. Adv Med Sci, 2019, 64(2):437-443. doi: 10.1016/j.advms.2019.09.001.
doi: 10.1016/j.advms.2019.09.001 URL |
[24] |
Sotgiu G, Saderi L, Petruccioli E, et al. QuantiFERON TB Gold Plus for the diagnosis of tuberculosis: a systematic review and meta-analysis. J Infect, 2019, 79(5):444-453. doi: 10.1016/j.jinf.2019.08.018.
doi: 10.1016/j.jinf.2019.08.018 URL |
[25] |
潘丽萍, 高孟秋, 贾红彦, 等. 新型结核分枝杆菌特异性细胞免疫反应检测技术对结核病辅助诊断的价值评估. 中华结核和呼吸杂志, 2021, 44(5):443-449. doi: 10.3760/cma.j.cn112147-20200821-00916.
doi: 10.3760/cma.j.cn112147-20200821-00916 |
[26] |
Petrone L, Vanini V, Chiacchio T, et al. Evaluation of IP-10 in Quantiferon-Plus as biomarker for the diagnosis of latent tuberculosis infection. Tuberculosis (Edinb), 2018, 111:147-153. doi: 10.1016/j.tube.2018.06.005.
doi: 10.1016/j.tube.2018.06.005 URL |
[27] |
Qiu X, Xiong T, Su X, et al. Accumulate evidence for IP-10 in diagnosing pulmonary tuberculosis. BMC Infect Dis, 2019, 19(1):924. doi: 10.1186/s12879-019-4466-5.
doi: 10.1186/s12879-019-4466-5 URL |
[28] |
Syed Ahamed Kabeer B, Raman B, Thomas A, et al. Role of QuantiFERON-TB gold, interferon gamma inducible protein-10 and tuberculin skin test in active tuberculosis diagnosis. PLoS One, 2010, 5(2):e9051. doi: 10.1371/journal.pone.0009051.
doi: 10.1371/journal.pone.0009051 URL |
[29] |
Blauenfeldt T, Heyckendorf J, Graff Jensen S, et al. Development of a one-step probe based molecular assay for rapid immunodiagnosis of infection with M.tuberculosis using dried blood spots. PLoS One, 2014, 9(9):e105628. doi: 10.1371/journal.pone.0105628.
doi: 10.1371/journal.pone.0105628 URL |
[30] |
Blauenfeldt T, Villar-Hernández R, García-García E, et al. Diagnostic Accuracy of Interferon Gamma-Induced Protein 10 mRNA Release Assay for Tuberculosis. J Clin Microbiol, 2020, 58(10):e00848-20. doi: 10.1128/JCM.00848-20.
doi: 10.1128/JCM.00848-20 |
[31] |
Pan L, Huang M, Jia H, et al. Diagnostic Performance of a Novel CXCL10 mRNA Release Assay for Mycobacterium tuberculosis Infection. Front Microbiol, 2022, 13:825413. doi: 10.3389/fmicb.2022.825413.
doi: 10.3389/fmicb.2022.825413 URL |
[32] |
Mamishi S, Pourakbari B, Teymuri M, et al. Diagnostic accuracy of IL-2 for the diagnosis of latent tuberculosis: a systema-tic review and meta-analysis. Eur J Clin Microbiol Infect Dis, 2014, 33(12):2111-2119. doi: 10.1007/s10096-014-2190-z.
doi: 10.1007/s10096-014-2190-z URL |
[33] |
Suzukawa M, Akashi S, Nagai H, et al. Combined Analysis of IFN-γ, IL-2, IL-5, IL-10, IL-1RA and MCP-1 in QFT Supernatant Is Useful for Distinguishing Active Tuberculosis from Latent Infection. PLoS One, 2016, 11(4):e0152483. doi: 10.1371/journal.pone.0152483.
doi: 10.1371/journal.pone.0152483 URL |
[34] |
Suter-Riniker F, Berger A, Mayor D, et al. Clinical significance of interleukin-2/gamma interferon ratios in Mycobacterium tuberculosis-specific T-cell signatures. Clin Vaccine Immunol, 2011, 18(8):1395-1396. doi: 10.1128/CVI.05013-11.
doi: 10.1128/CVI.05013-11 pmid: 21632888 |
[35] |
Biselli R, Mariotti S, Sargentini V, et al. Detection of interleukin-2 in addition to interferon-gamma discriminates active tuberculosis patients, latently infected individuals, and controls. Clin Microbiol Infect, 2010, 16(8):1282-1284. doi: 10.1111/j.1469-0691.2009.03104.x.
doi: 10.1111/j.1469-0691.2009.03104.x URL |
[36] |
Santin M, Morandeira-Rego F, Alcaide F, et al. Detection of interleukin-2 is not useful for distinguishing between latent and active tuberculosis in clinical practice: a prospective cohort study. Clin Microbiol Infect, 2016, 22(12): 1007.e1-1007.e5. doi: 10.1016/j.cmi.2016.09.004.
doi: 10.1016/j.cmi.2016.09.004 |
[37] |
Chiappini E, Della Bella C, Bonsignori F, et al. Potential role of M.tuberculosis specific IFN-γ and IL-2 ELISPOT assays in discriminating children with active or latent tuberculosis. PLoS One, 2012, 7(9):e46041. doi: 10.1371/journal.pone.0046041.
doi: 10.1371/journal.pone.0046041 URL |
[38] |
Della Bella C, Spinicci M, Grassi A, et al. Novel M.tuberculosis specific IL-2 ELISpot assay discriminates adult patients with active or latent tuberculosis. PLoS One, 2018, 13(6):e0197825. doi: 10.1371/journal.pone.0197825.
doi: 10.1371/journal.pone.0197825 URL |
[39] |
Hwai H, Chen YY, Tzeng SJ. B-Cell ELISpot Assay to Quantify Antigen-Specific Antibody-Secreting Cells in Human Peripheral Blood Mononuclear Cells. Methods Mol Biol, 2018, 1808:133-141. doi: 10.1007/978-1-4939-8567-8_11.
doi: 10.1007/978-1-4939-8567-8_11 pmid: 29956179 |
[40] |
Sebina I, Cliff JM, Smith SG, et al. Long-lived memory B-cell responses following BCG vaccination. PLoS One, 2012, 7(12):e51381. doi: 10.1371/journal.pone.0051381.
doi: 10.1371/journal.pone.0051381 URL |
[41] |
Joosten SA, van Meijgaarden KE, Del Nonno F, et al. Patients with Tuberculosis Have a Dysfunctional Circulating B-Cell Compartment, Which Normalizes following Successful Treatment. PLoS Pathog, 2016, 12(6):e1005687. doi: 10.1371/journal.ppat.1005687.
doi: 10.1371/journal.ppat.1005687 URL |
[42] |
Gindeh A, Owolabi O, Donkor S, et al. Mycobacterium tuberculosis-specific plasmablast levels are differentially modulated in tuberculosis infection and disease. Tuberculosis (Edinb), 2020, 124:101978. doi: 10.1016/j.tube.2020.101978.
doi: 10.1016/j.tube.2020.101978 URL |
[43] |
Ashenafi S, Aderaye G, Zewdie M, et al. BCG-specific IgG-secreting peripheral plasmablasts as a potential biomarker of active tuberculosis in HIV negative and HIV positive patients. Thorax, 2013, 68(3):269-276. doi: 10.1136/thoraxjnl-2012-201817.
doi: 10.1136/thoraxjnl-2012-201817 pmid: 22923457 |
[44] |
Sudbury EL, Clifford V, Messina NL, et al. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect, 2020, 81(6):873-881. doi: 10.1016/j.jinf.2020.09.032.
doi: 10.1016/j.jinf.2020.09.032 pmid: 33007340 |
[45] |
Day CL, Abrahams DA, Lerumo L, et al. Functional capacity of Mycobacterium tuberculosis-specific T cell responses in humans is associated with mycobacterial load. J Immunol, 2011, 187(5):2222-2232. doi: 10.4049/jimmunol.1101122.
doi: 10.4049/jimmunol.1101122 URL |
[46] |
Harari A, Rozot V, Bellutti Enders F, et al. Dominant TNF-α + Mycobacterium tuberculosis-specific CD4 + T cell responses discriminate between latent infection and active disease. Nat Med, 2011, 17(3):372-376. doi: 10.1038/nm.2299.
doi: 10.1038/nm.2299 URL |
[47] |
Rozot V, Patrizia A, Vigano S, et al. Combined use of Mycobacterium tuberculosis-specific CD4 and CD8 T-cell responses is a powerful diagnostic tool of active tuberculosis. Clin Infect Dis, 2015, 60(3):432-437. doi: 10.1093/cid/ciu795.
doi: 10.1093/cid/ciu795 URL |
[48] |
Kim JY, Kang YA, Park JH, et al. An IFN-γ and TNF-α dual release fluorospot assay for diagnosing active tuberculosis. Clin Microbiol Infect, 2020, 26(7):928-934. doi: 10.1016/j.cmi.2019.11.003.
doi: 10.1016/j.cmi.2019.11.003 URL |
[49] |
Kim JY, Park JH, Kim MC, et al. Combined IFN-γ and TNF-α release assay for differentiating active tuberculosis from latent tuberculosis infection. J Infect, 2018, 77(4):314-320. doi: 10.1016/j.jinf.2018.04.011.
doi: 10.1016/j.jinf.2018.04.011 URL |
[50] |
Adekambi T, Ibegbu CC, Cagle S, et al. Biomarkers on patient T cells diagnose active tuberculosis and monitor treatment response. J Clin Invest, 2015, 125(5):1827-1838. doi: 10.1172/JCI77990.
doi: 10.1172/JCI77990 pmid: 25822019 |
[51] |
《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础专业和临床专业学术部. 结核病患者外周血淋巴细胞亚群检测及临床应用专家共识. 中国防痨杂志, 2020, 42(10):1009-1016. doi: 10.3969/j.issn.1000-6621.2020.10.001.
doi: 10.3969/j.issn.1000-6621.2020.10.001 |
[52] |
Agranoff D, Fernandez-Reyes D, Papadopoulos MC, et al. Identification of diagnostic markers for tuberculosis by proteomic fingerprinting of serum. Lancet, 2006, 368(9540):1012-1021. doi: 10.1016/S0140-6736(06)69342-2.
doi: 10.1016/S0140-6736(06)69342-2 pmid: 16980117 |
[53] |
De Groote MA, Sterling DG, Hraha T, et al. Discovery and Validation of a Six-Marker Serum Protein Signature for the Diagnosis of Active Pulmonary Tuberculosis. J Clin Microbiol, 2017, 55(10):3057-3071. doi: 10.1128/JCM.00467-17.
doi: 10.1128/JCM.00467-17 pmid: 28794177 |
[54] |
Yang Q, Chen Q, Zhang M, et al. Identification of eight-protein biosignature for diagnosis of tuberculosis. Thorax, 2020, 75(7):576-583. doi: 10.1136/thoraxjnl-2018-213021.
doi: 10.1136/thoraxjnl-2018-213021 URL |
[55] |
Sun H, Pan L, Jia H, et al. Label-Free Quantitative Proteomics Identifies Novel Plasma Biomarkers for Distinguishing Pulmonary Tuberculosis and Latent Infection. Front Microbiol, 2018, 9:1267. doi: 10.3389/fmicb.2018.01267.
doi: 10.3389/fmicb.2018.01267 URL |
[56] |
Singer SN, Ndumnego OC, Kim RS, et al. Plasma host protein biomarkers correlating with increasing Mycobacterium tuberculosis infection activity prior to tuberculosis diagnosis in people living with HIV. EBioMedicine, 2022, 75:103787. doi: 10.1016/j.ebiom.2021.103787.
doi: 10.1016/j.ebiom.2021.103787 URL |
[57] |
Mutavhatsindi H, Calder B, McAnda S, et al. Identification of novel salivary candidate protein biomarkers for tuberculosis diagnosis: A preliminary biomarker discovery study. Tuberculosis (Edinb), 2021, 130:102118. doi: 10.1016/j.tube.2021.102118.
doi: 10.1016/j.tube.2021.102118 URL |
[58] |
Arya R, Dabral D, Faruquee HM, et al. Serum Small Extracellular Vesicles Proteome of Tuberculosis Patients Demonstrated Deregulated Immune Response. Proteomics Clin Appl, 2020, 14(1):e1900062. doi: 10.1002/prca.201900062.
doi: 10.1002/prca.201900062 |
[59] |
Chen J, Han YS, Yi WJ, et al. Serum sCD14, PGLYRP2 and FGA as potential biomarkers for multidrug-resistant tuberculosis based on data-independent acquisition and targeted proteomics. J Cell Mol Med, 2020, 24(21):12537-12549. doi: 10.1111/jcmm.15796.
doi: 10.1111/jcmm.15796 URL |
[60] |
Kaewseekhao B, Roytrakul S, Yingchutrakul Y, et al. Proteomic analysis of infected primary human leucocytes revealed PSTK as potential treatment-monitoring marker for active and latent tuberculosis. PLoS One, 2020, 15(4):e0231834. doi: 10.1371/journal.pone.0231834.
doi: 10.1371/journal.pone.0231834 URL |
[61] |
Pan L, Zhang X, Jia H, et al. Label-Free Quantitative Proteomics Identifies Novel Biomarkers for Distinguishing Tuberculosis Pleural Effusion from Malignant Pleural Effusion. Proteomics Clin Appl, 2020, 14(1):e1900001. doi: 10.1002/prca.201900001.
doi: 10.1002/prca.201900001 |
[62] |
Shen Y, Xun J, Song W, et al. Discovery of Potential Plasma Biomarkers for Tuberculosis in HIV-Infected Patients by Data-Independent Acquisition-Based Quantitative Proteomics. Infect Drug Resist, 2020, 13:1185-1196. doi: 10.2147/IDR.S245460.
doi: 10.2147/IDR.S245460 URL |
[63] |
Garay-Baquero DJ, White CH, Walker NF, et al. Comprehensive plasma proteomic profiling reveals biomarkers for active tuberculosis. JCI Insight, 2020, 5(18):e137427. doi: 10.1172/jci.insight.137427.
doi: 10.1172/jci.insight.137427 URL |
[64] |
Penn-Nicholson A, Hraha T, Thompson EG, et al. Discovery and validation of a prognostic proteomic signature for tuberculosis progression: A prospective cohort study. PLoS Med, 2019, 16(4):e1002781. doi: 10.1371/journal.pmed.1002781.
doi: 10.1371/journal.pmed.1002781 URL |
[65] |
Shi J, Li P, Zhou L, et al. Potential biomarkers for antidiastole of tuberculous and malignant pleural effusion by proteome analysis. Biomark Med, 2019, 13(2):123-133. doi: 10.2217/bmm-2018-0200.
doi: 10.2217/bmm-2018-0200 URL |
[1] | 夏辉, 郑扬, 宋媛媛. 世界卫生组织《优化肉汤微孔板法结核分枝杆菌复合群药物敏感性试验方法学》解读[J]. 中国防痨杂志, 2022, 44(7): 641-645. |
[2] | 刘海婷, 李东硕, 张蕾, 王宁, 王彬, 丁杨明, 姚蓉, 陆宇. 吡法齐明与贝达喹啉协同作用及机制的初步研究[J]. 中国防痨杂志, 2022, 44(7): 646-653. |
[3] | 陆霓虹, 沈凌筠, 刘洪璐, 陈杨君, 杨艳, 杜映荣. 早期分泌抗原靶6及免疫和炎症指标对抗结核药物性肝损伤的诊断价值[J]. 中国防痨杂志, 2022, 44(7): 654-659. |
[4] | 余春红, 刘幸, 沈凌筠, 李海雯, 李谢, 伍蓉霜, 李先蕊, 樊浩. 含贝达喹啉方案治疗耐多药肺结核疗效与安全性的Meta分析[J]. 中国防痨杂志, 2022, 44(7): 660-668. |
[5] | 代小伟, 王嫩寒, 陈双双, 杨新宇, 田丽丽, 陈红, 张泓泰, 李传友. 二代测序技术检测临床痰标本中结核分枝杆菌的初步评价[J]. 中国防痨杂志, 2022, 44(7): 669-679. |
[6] | 饶海涛, 董伟杰, 秦世炳. 653例胸椎结核临床特点分析[J]. 中国防痨杂志, 2022, 44(7): 675-680. |
[7] | 康万里, 李恬静, 王赛赛, 李常华, 赵秋月, 郑素华, 刘洋. 全国活动性肺结核报告发病率变动趋势及预测研究[J]. 中国防痨杂志, 2022, 44(7): 681-684. |
[8] | 陈燕梅, 温文沛, 吴惠忠, 徐镠粤, 彭柯皓, 余美玲. 2016—2020年广东省结核病耐药监测结果分析[J]. 中国防痨杂志, 2022, 44(7): 685-689. |
[9] | 钟倩红, 马晓慧, 钟永辉, 赵之梦, 张锡林, 许邦, 罗洁莹, 钟丽萍, 戴磊. 2014—2018年佛山市肺结核患者复发情况及影响因素分析[J]. 中国防痨杂志, 2022, 44(7): 690-697. |
[10] | 高丽, 庞学文, 张国钦, 李敬新, 张帆. 天津市初治活动性肺结核患者成功治疗后2年内复发的危险因素分析[J]. 中国防痨杂志, 2022, 44(7): 698-703. |
[11] | 薛晓, 张东彦, 艾萍, 邓玲, 陈巍, 胡远莲, 贾雪娇, 杨国梁, 信振江, 常利杰. 肺结核患者电子药盒和微信小程序使用情况分析[J]. 中国防痨杂志, 2022, 44(7): 704-710. |
[12] | 庞宇, 孙玙贤, 张立杰, 谢仕恒, 刘宇红. 基于互联网技术的结核病远程医疗咨询与培训平台的应用分析[J]. 中国防痨杂志, 2022, 44(7): 711-715. |
[13] | 聂文娟, 周文强, 初乃惠. 贝达喹啉药代动力学和药物相互作用研究进展[J]. 中国防痨杂志, 2022, 44(7): 716-719. |
[14] | 杨驰, 王振伟, 沙巍. 中药治疗耐多药结核病的研究进展[J]. 中国防痨杂志, 2022, 44(7): 727-731. |
[15] | 田娜, 褚洪迁, 孙照刚. 纳米药物递送系统在结核病治疗中的研究进展[J]. 中国防痨杂志, 2022, 44(7): 732-737. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||