Email Alert | RSS    帮助

中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (7): 708-715.doi: 10.3969/j.issn.1000-6621.2021.07.012

• 论著 • 上一篇    下一篇

2013—2019年四川省凉山彝族自治州HIV/AIDS与结核病时空分布特征及相关性分析

李京, 袁风顺, 李婷, 李运葵, 高文凤, 杨成彬, 何金戈(), 杨文()   

  1. 610041 成都,四川省疾病预防控制中心结核病预防控制所(李京、袁风顺、李婷、李运葵、高文凤、何金戈、杨文);四川省凉山彝族自治州布拖县人民医院结核科(杨成彬)
  • 收稿日期:2021-03-01 出版日期:2021-07-10 发布日期:2021-07-09
  • 通信作者: 何金戈,杨文 E-mail:hejinge@163.com;yangwenn@yeah.net
  • 基金资助:
    “十三五”国家科技重大专项(2018ZX10715003-002)

Spatial and temporal distribution characteristics and correlation analysis of HIV/AIDS and tuberculosis in Liangshan Yi Autonomous Prefecture, Sichuan from 2013 to 2019

LI Jing, YUAN Feng-shun, LI Ting, LI Yun-kui, GAO Wen-feng, YANG Cheng-bin, HE Jin-ge(), YANG Wen()   

  1. Institute for Tuberculosis Control and Prevention, Sichuan Center for Disease Control and Prevention, Chengdu 610041, China
  • Received:2021-03-01 Online:2021-07-10 Published:2021-07-09
  • Contact: HE Jin-ge,YANG Wen E-mail:hejinge@163.com;yangwenn@yeah.net

摘要: 目的 比较2013—2019年四川省凉山彝族自治州(简称“凉山州”)HIV感染和艾滋病(HIV/AIDS)与结核病报告病例的时间及空间分布,分析两种疾病时间与空间的相关性和报告病例的热点地区,为制订相应的防治策略提供参考依据。 方法 通过中国疾病预防控制中心《传染病网络直报信息系统》,收集2013—2019年四川省凉山州HIV/AIDS与结核病报告病例数据。应用SPSS 23.0软件进行简单相关及线性回归分析,运用ArcGIS 10.0软件进行全局空间自相关和局部空间自相关分析,应用GeoDa 1.1.4软件进行双变量空间自相关分析。 结果 2013—2019年凉山州17个县(区)均报告HIV/AIDS和结核病病例;各年度报告HIV/AIDS病例数分别为4139、4406、4005、4802、5570、10105和4694例,历年环比增长率分别为6.5%、-9.1%、19.9%、16.0%、81.4%、-53.5%;各年度报告结核病病例数分别为4590、4323、4453、5931、6748、6432和6893例,历年环比增长率分别为-5.8%、3.0%、33.1%、13.8%、-4.7%、7.2%。线性回归分析结果表明,凉山州HIV/AIDS与结核病报告病例数的相关系数(rs)与年份(x)之间符合线性分布,线性回归方程为:rs=-106.602+0.53x(回归系数检验:t=3.109,P=0.027),拟合优度一般(决定系数R 2=0.659,校正系数R 2=0.591)。全局空间自相关分析显示,HIV/AIDS报告发病率2013—2018年存在空间正相关(Moran’sI值分别为0.213、0.194、0.342、0.368、0.271、0.180,P值分别为0.028、0.033、0.003、0.002、0.008和0.027);结核病报告发病率2013—2019年均存在中等程度及以上空间正相关(Moran’sI值分别为0.374、0.500、0.451、0.347、0.487、0.472和0.532,P值均<0.05)。局部空间自相关分析显示,2013—2018年凉山州昭觉县、布拖县、金阳县为HIV/AIDS报告病例的热点地区。2013—2015年,结核病热点地区主要集中在雷波县、美姑县、金阳县;甘洛县2015—2017年是热点地区;昭觉县2014年加入热点地区,自2016年起持续成为热点地区,并辐射至越西县。双变量全局空间自相关分析显示,2013—2019年HIV/AIDS和结核病报告发病率均为正相关(Moran’sI值分别为0.312、0.345、0.385、0.419、0.388、0.345、0.293,P值均<0.05)。 结论 HIV/AIDS与结核病报告病例在时空分布上存在较强的正相关性,提示凉山州在传染病防控工作中,要将两种疾病同等重视,紧密结合,提高对HIV和结核分枝杆菌双重感染者的诊疗水平,加强对重点地区、重点人群的防治措施,完善诊疗和保障水平。

关键词: 结核, HIV感染, 获得性免疫缺陷综合征, 时空聚类分析

Abstract: Objective To compare the temporal and spatial distribution of reported cases of HIV infection and AIDS (HIV/AIDS) and tuberculosis in Liangshan Yi Autonomous Prefecture (Liangshan Prefecture) in Sichuan from 2013 to 2019, and analyze the temporal and spatial correlation of the two diseases and the hot areas of the disease, so as to provide reference for formulating prevention and control strategies. Methods Numbers of reported HIV/AIDS and tuberculosis cases between 2013 and 2019 were collected from internet-based reporting system of Chinese Center for Disease Control and Prevention. The temporal and spatial correlation of the two diseases was analyzed by simple correlation, linear regression and spatial autocorrelation. SPSS 23.0 software was used to analyze the simple correlation and linear regression, ArcGIS 10.0 software was used to analyze the global spatial autocorrelation and local spatial autocorrelation, and the dual variable spatial autocorrelation analysis was carried out using GeoDa 1.1.4 software. Results HIV/AIDS and tuberculosis patients were reported from all the 17 counties (districts) in Liangshan Prefecture. The numbers in each year were 4139, 4406, 4005, 4802, 5570, 10105 and 4694, respectively, and the increasing rates were 6.5%, -9.1%, 19.9%, 16.0%, 81.4% and -53.5%, respectively. Numbers of reported tuberculosis cases in each year were 4590, 4323, 4453, 5931, 6748, 6432 and 6893, respectively, and the increasing rates were -5.8%, 3.0%, 33.1%, 13.8%, -4.7% and 7.2%, respectively. The results of linear regression analysis showed that the correlation coefficient (rs) between numbers of reported cases of HIV/AIDS and tuberculosis in Liangshan Prefecture according to a linear distribution with the year (x). The linear regression equation was: rs=-106.602+0.53x (regression coefficient test: t=3.109, P=0.027), the goodness of fit was average (determination coefficient R 2=0.659, correction coefficient R 2=0.591). Global spatial autocorrelation analysis showed that there was a positive spatial correlation between the reported incidence of HIV/AIDS from 2013 to 2018 (Moran’sI values were 0.213, 0.194, 0.342, 0.368, 0.271 and 0.180, respectively; P values were 0.028, 0.033, 0.003, 0.002, 0.008 and 0.027, respectively); the reported incidence of tuberculosis from 2013 to 2019 had a positive spatial correlation of medium degree and above (Moran’sI values were 0.374, 0.500, 0.451, 0.347, 0.487, 0.472 and 0.532, respectively; all P<0.05). Local spatial autocorrelation analysis showed that, from 2013 to 2018, Zhaojue County, Butuo County, and Jinyang County in Liangshan Prefecture were hot spots for reported cases of HIV/AIDS. From 2013 to 2015, the hot spots for tuberculosis were mainly concentrated on Leibo County, Meigu County, and Jinyang County; Ganluo County was a hot spot from 2015 to 2017; Zhaojue County became the hot spot in 2014 and had continued to be a hot spot since 2016, and it had spread to Yuexi County. The bivariate global spatial autocorrelation analysis showed that the reported incidence of HIV/AIDS and tuberculosis were positively correlated from 2013 to 2019 (Moran’sI values were 0.312, 0.345, 0.385, 0.419, 0.388, 0.345 and 0.293, respectively; all P<0.05). Conclusion There was a strong positive correlation between HIV/AIDS and tuberculosis reported cases in the temporal and spatial distribution, which suggested that Liangshan Prefecture should pay equal attention to the two diseases in the prevention and control of these two infectious diseases, close combination were needed, the diagnosis and treatment of HIV/AIDS and tuberculosis patients should be improved, the prevention and control measures for key areas and groups should be strengthened, and the diagnosis, treatment and health care should be improved.

Key words: Tuberculosis, HIV infections, Acquired immunodeficiency syndrome, Space-time clustering