Email Alert | RSS    帮助

中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (6): 569-575.doi: 10.3969/j.issn.1000-6621.2021.06.009

• 论著 • 上一篇    下一篇

自回归移动平均模型的建立及在广州市肺结核发病预测中的应用

雷宇*, 何立乾, 张广川, 赖铿, 谢玮, 杜雨华()   

  1. 广东药科大学公共卫生学院流行病与卫生统计学系[张广川(在读研究生)]
  • 收稿日期:2021-01-23 出版日期:2021-06-10 发布日期:2021-06-02
  • 通信作者: 杜雨华 E-mail:du.yuhua@163.com
  • 基金资助:
    “十三五”国家科技重大专项(2018ZX10715004-002-017);广州市高水平临床重点专科和培育专科建设项目(穗卫函〔2019〕1555号);广东省转化医学创新平台培育建设项目(粤卫函〔2018〕1254号);广州市卫生健康科技重大项目(2020A031003)

Establishment of ARIMA model and its application on the prediction of pulmonary tuberculosis incidence in Guangzhou

LEI Yu*, HE Li-qian, ZHANG Guang-chuan, LAI Keng, XIE Wei, DU Yu-hua()   

  1. *Department of Tuberculosis Prevention and Management, Guangzhou Chest Hospital, Guangzhou 510095, China
  • Received:2021-01-23 Online:2021-06-10 Published:2021-06-02
  • Contact: DU Yu-hua E-mail:du.yuhua@163.com

摘要:

目的建立自回归移动平均(autoregressive integrated moving average,ARIMA)模型并对广州市2021年肺结核月报告发病数进行预测,为广州市肺结核防控提供参考。方法通过《中国疾病预防控制信息系统》中的《传染病报告信息管理系统》,收集广州市2010年1月至2019年12月肺结核月报告发病数据,通过时间序列分析建立ARIMA模型,并对2021年广州市肺结核发病情况进行预测。再通过2010—2018年报告发病数据重新拟合模型,检验模型参数的稳定性和预测的准确性。结果2010—2019年广州市肺结核共报告发病115887例,并呈逐年下降趋势,报告发病数具有明显的季节性,在每年3—5月报告发病例数出现高峰,报告发病低谷则为2月份。广州市肺结核发病数拟合最佳模型为ARIMA(1,1,1)×(0,1,1)12(P残差检验=0.693,AIC=1215.300),该模型拟合的2020年1—12月的预测值与实际值的平均绝对百分比误差(MAPE)=7.29%。通过2010—2018年的报告发病数据拟合最优模型仍为ARIMA(1,1,1)×(0,1,1)12(P残差检验=0.847,AIC=1089.260),该模型拟合的2019年1—12月的预测值与实际报告值的MAPE为4.91%。广州市2021年肺结核预测发病数为8270例,月平均报告发病数为689例,报告发病水平较2020年略有上升。结论ARIMA(1,1,1)×(0,1,1)12模型对广州市肺结核报告发病患者例数有较好的预测效果,可用于广州市肺结核的短期预期和动态分析。

关键词: 结核,肺, 疾病报告, 预测, 模型,统计学

Abstract:

ObjectiveTo establish an Auto-regressive Integrated Moving Average (ARIMA) model of tuberculosis (TB) in Guangzhou and use it to make prediction on the number of notified pulmonary tuberculosis (PTB) cases in Guangzhou, so as to provide a reference for the prevention and control of TB in Guangzhou. MethodsThe monthly notification incidence data of TB in Guangzhou from January 2010 to December 2019 was collected through the “Chinese Disease Prevention and Control Information System”. ARIMA model was established by conducting time series analysis to predict the notification incidence of PTB in Guangzhou in 2021. In addition, the stability of model parameters and the accuracy of prediction model were tested by re-fitting the model with data from 2010 to 2018. ResultsA total of 115887 PTB cases were notified in Guangzhou from 2010 to 2019, which showed a downward trend year by year together with a significant seasonality. The number of cases reached a peak from March to May every year, and the trough always occurred in February. The best fitting model was ARIMA(1,1,1)×(0,1,1)12 (Presidual test=0.693, AIC=1215.300), and the mean absolute percentage error (MAPE) between the actual value and the predicted value fitted by the model for January to December 2020 was 7.29%. According to the data from 2010 to 2018, the optimal model was still ARIMA(1,1,1)×(0,1,1)12 (Presidual test=0.847, AIC=1089.260) and MAPE between the actual value and the predicted value fitted by model for January to December in 2019 was 4.91%. The predicted number of PTB cases in Guangzhou in 2021 was 8270, and the average number of monthly cases was 689. The incidence level was slightly higher than that in 2020. Conclusion The ARIMA (1,1,1)×(0,1,1)12 model made a good prediction on the number of notified PTB cases in Guangzhou, and could be used for short-term forecasting and dynamic analysis of TB in Guangzhou.

Key words: Tuberculosis,pulmonary, Disease notification, Forecasting, Models,statistical