Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (9): 1098-1103.doi: 10.19982/j.issn.1000-6621.20240123
• Review Articles • Previous Articles Next Articles
Li Wenhan, Yang Jing, Li Chunhua()
Received:
2024-04-01
Online:
2024-09-10
Published:
2024-08-30
Contact:
Li Chunhua, Email: Supported by:
CLC Number:
Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction[J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. doi: 10.19982/j.issn.1000-6621.20240123
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240123
[1] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[2] |
Lange C, Dheda K, Chesov D, et al. Management of drug-resistant tuberculosis. Lancet, 2019, 394(10202):953-966. doi:10.1016/S0140-6736(19)31882-3.
pmid: 31526739 |
[3] |
Cunha L, Rodrigues S, Rosa da Costa AM, et al. Inhalable chitosan microparticles for simultaneous delivery of isoniazid and rifabutin in lung tuberculosis treatment. Drug Dev Ind Pharm, 2019, 45(8): 1313-1220. doi:10.1080/03639045.2019.1608231.
pmid: 30990096 |
[4] |
Amisha, Malik P, Pathania M, et al. Overview of artificial intelligence in medicine. J Family Med Prim Care, 2019, 8(7): 2328-2331. doi:10.4103/jfmpc.jfmpc_440_19.
pmid: 31463251 |
[5] | Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism, 2017, 69S: S36-S40. doi:10.1016/j.metabol.2017.01.011. |
[6] | 陈冲, 陈俊, 夏黎明. 人工智能促进医学影像临床应用与研究. 放射学实践, 2024, 39(1): 12-16. doi:10.13609/j.cnki.1000-0313.2024.01.003. |
[7] | 吴键, 侯代伦. 深度学习在肺结核影像诊断中的应用. 中国防痨杂志, 2022, 44(1): 91-94. doi:10.19982/j.issn.1000-6621.20210537. |
[8] | 吴林玉, 许茂盛. 重视人工智能在医学影像中的研究与应用. 中国中西医结合影像学杂志, 2022, 20(4): 307-309. doi:10.3969/j.issn.1672-0512.2022.04.001. |
[9] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 2: screening-systematic screening for tuberculosis disease. Geneva: World Health Organization, 2021. |
[10] | Khan FA, Majidulla A, Tavaziva G, et al. Chest X-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: a prospective study of diagnostic accuracy for culture-confirmed disease. Lancet Digit Health, 2020, 2(11): e573-e581. doi:10.1016/S2589-7500(20)30221-1. |
[11] | Yang Y, Xia L, Liu P, et al. A prospective multicenter clinical research study validating the effectiveness and safety of a chest X-ray-based pulmonary tuberculosis screening software JF CXR-1 built on a convolutional neural network algorithm. Front Med (Lausanne), 2023, 10: 1195451. doi:10.3389/fmed.2023.1195451. |
[12] | Nafisah SI, Muhammad G. Tuberculosis detection in chest radiograph using convolutional neural network architecture and explainable artificial intelligence. Neural Comput Appl, 2022:1-21. doi:10.1007/s00521-022-07258-6. |
[13] | Jasmine Pemeena Priyadarsini M, Kotecha K, Rajini GK, et al. Lung Diseases Detection Using Various Deep Learning Algorithms. J Healthc Eng, 2023, 2023:3563696. doi:10.1155/2023/3563696. |
[14] | Mahbub MK, Biswas M, Gaur L, et al. Deep features to detect pulmonary abnormalities in chest X-rays due to infectious diseaseX: Covid-19, pneumonia, and tuberculosis. Inf Sci (N Y), 2022, 592:389-401. doi:10.1016/j.ins.2022.01.062. |
[15] | Simi Margarat G, Hemalatha G, Mishra A, et al. Early Diagnosis of Tuberculosis Using Deep Learning Approach for IOT Based Healthcare Applications. Comput Intell Neurosci, 2022, 2022:3357508. doi:10.1155/2022/3357508. |
[16] | Kim K, Lee JH, Je Oh S, et al. AI-based computer-aided diagnostic system of chest digital tomography synthesis: Demonstrating comparative advantage with X-ray-based AI systems. Comput Methods Programs Biomed, 2023, 240: 107643. doi:10.1016/j.cmpb.2023.107643. |
[17] | 吴树才, 王新举, 纪俊雨, 等. 基于深度学习卷积神经网络的肺结核CT诊断模型效能初探. 中华结核和呼吸杂志, 2021, 44(5): 450-455. doi:10.3760/cma.j.cn112147-20210108-00026. |
[18] | Yan C, Wang L, Lin J, et al. A fully automatic artificial intelligence-based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis. Eur Radiol, 2022, 32(4):2188-2199. doi:10.1007/s00330-021-08365-z. |
[19] | 刘雪艳, 王芳, 李春华, 等. 基于深度学习的继发性肺结核CT辅助诊断模型构建及验证. 中国防痨杂志, 2024, 46(3): 279-287. doi:10.19982/j.issn.1000-6621.20230356. |
[20] | Devasia J, Goswami H, Lakshminarayanan S, et al. Observer Performance Evaluation of a Deep Learning Model for Multilabel Classification of Active Tuberculosis Lung Zone-Wise Manifestations. Cureus, 2023, 15(9):e44954. doi:10.7759/cureus.44954. |
[21] | Choi SY, Choi A, Baek SE, et al. Effect of multimodal diagnostic approach using deep learning-based automated detection algorithm for active pulmonary tuberculosis. Sci Rep, 2023, 13(1):19794. doi:10.1038/s41598-023-47146-0. |
[22] | Venkataramana L, Prasad DVV, Saraswathi S, et al. Classification of COVID-19 from tuberculosis and pneumonia using deep learning techniques. Med Biol Eng Comput, 2022, 60(9):2681-2691. doi:10.1007/s11517-022-02632-x. |
[23] | Rajaraman S, Zamzmi G, Folio LR, et al. Detecting Tuberculosis-Consistent Findings in Lateral Chest X-Rays Using an Ensemble of CNNs and Vision Transformers. Front Genet, 2022, 13:864724. doi:10.3389/fgene.2022.864724. |
[24] |
Devasia J, Goswami H, Lakshminarayanan S, et al. Deep learning classification of active tuberculosis lung zones wise manifestations using chest X-rays: a multi label approach. Sci Rep, 2023, 13(1):887. doi:10.1038/s41598-023-28079-0.
pmid: 36650270 |
[25] | Lee JH, Park S, Hwang EJ, et al. Deep learning-based automated detection algorithm for active pulmonary tuberculosis on chest radiographs: diagnostic performance in systematic screening of asymptomatic individuals. Eur Radiol, 2021, 31(2):1069-1080. doi:10.1007/s00330-020-07219-4. |
[26] | Kazemzadeh S, Yu J, Jamshy S, et al. Deep Learning Detection of Active Pulmonary Tuberculosis at Chest Radiography Matched the Clinical Performance of Radiologists. Radiology, 2023, 306(1):124-137. doi:10.1148/radiol.212213. |
[27] | Zhou W, Cheng G, Zhang Z, et al. Deep learning-based pulmonary tuberculosis automated detection on chest radiography: large-scale independent testing. Quant Imaging Med Surg, 2022, 12(4):2344-2355. doi:10.21037/qims-21-676. |
[28] | Da-Ano R, Visvikis D, Hatt M. Harmonization strategies for multicenter radiomics investigations. Phys Med Biol, 2020, 65(24):24TR02. doi:10.1088/1361-6560/aba798. |
[29] | Feng B, Chen X, Chen Y, et al. Solitary solid pulmonary nodules: a CT-based deep learning nomogram helps differentiate tuberculosis granulomas from lung adenocarcinomas. Eur Radiol, 2020, 30(12):6497-6507. doi:10.1007/s00330-020-07024-z. |
[30] | Feng B, Chen X, Chen Y, et al. Radiomics nomogram for preoperative differentiation of lung tuberculoma from adenocarcinoma in solitary pulmonary solid nodule. Eur J Radiol, 2020, 128:109022. doi:10.1016/j.ejrad.2020.109022. |
[31] | Tan H, Bates JHT, Matthew Kinsey C. Discriminating TB lung nodules from early lung cancers using deep learning. BMC Med Inform Decis Mak, 2022, 22(1):161. doi:10.1186/s12911-022-01904-8. |
[32] | 韩喜琴, 王敬, 谭秋清, 等. 93例非结核分枝杆菌肺病临床分析. 中国防痨杂志, 2023, 45(4): 355-361. doi:10.19982/j.issn.1000-6621.20220519. |
[33] | Park M, Lee Y, Kim S, et al. Distinguishing nontuberculous mycobacterial lung disease and Mycobacterium tuberculosis lung disease on X-ray images using deep transfer learning. BMC Infect Dis, 2023, 23(1):32. doi:10.1186/s12879-023-07996-5. |
[34] | Wang L, Ding W, Mo Y, et al. Distinguishing nontuberculous mycobacteria from Mycobacterium tuberculosis lung disease from CT images using a deep learning framework. Eur J Nucl Med Mol Imaging, 2021, 48(13):4293-4306. doi:10.1007/s00259-021-05432-x. |
[35] | Ying C, Li X, Lv S, et al. T-SPOT with CT image analysis based on deep learning for early differential diagnosis of nontuberculous mycobacteria pulmonary disease and pulmonary tuberculosis. Int J Infect Dis, 2022, 125:42-50. doi:10.1016/j.ijid.2022.09.031. |
[36] | Gao Y, Zhang Y, Hu C, et al. Distinguishing infectivity in patients with pulmonary tuberculosis using deep learning. Front Public Health, 2023, 11:1247141. doi:10.3389/fpubh.2023.1247141. |
[37] | Nijiati M, Zhou R, Damaola M, et al. Deep learning based CT images automatic analysis model for active/non-active pulmonary tuberculosis differential diagnosis. Front Mol Biosci, 2022, 9:1086047. doi:10.3389/fmolb.2022.1086047. |
[38] |
Higashiguchi M, Nishioka K, Kimura H, et al. Prediction of the duration needed to achieve culture negativity in patients with active pulmonary tuberculosis using convolutional neural networks and chest radiography. Respir Investig, 2021, 59(4):421-427. doi:10.1016/j.resinv.2021.01.004.
pmid: 33707161 |
[39] | Nijiati M, Guo L, Abulizi A, et al. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol, 2023, 169:111180. doi:10.1016/j.ejrad.2023.111180. |
[40] | 王泊宁, 李涛, 陈伟. 耐药结核病经济负担研究进展. 中国防痨杂志, 2023, 45(6): 607-612. doi:10.19982/j.issn.1000-6621.20230018. |
[41] | Gao XW, Qian Y. Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques. Mol Pharm, 2018, 15(10):4326-4335. doi:10.1021/acs.molpharmaceut.7b00875. |
[42] |
Jaeger S, Juarez-Espinosa OH, Candemir S, et al. Detecting drug-resistant tuberculosis in chest radiographs. Int J Comput Assist Radiol Surg, 2018, 13(12):1915-1925. doi:10.1007/s11548-018-1857-9.
pmid: 30284153 |
[43] |
Karki M, Kantipudi K, Yu H, et al. Identifying Drug-Resistant Tuberculosis in Chest Radiographs: Evaluation of CNN Architectures and Training Strategies. Annu Int Conf IEEE Eng Med Biol Soc, 2021, 2021:2964-2967. doi:10.1109/EMBC46164.2021.9630189.
pmid: 34891867 |
[44] | Karki M, Kantipudi K, Yang F, et al. Generalization Challenges in Drug-Resistant Tuberculosis Detection from Chest X-rays. Diagnostics (Basel), 2022, 12(1):188. doi:10.3390/diagnostics12010188. |
[45] | Ureta J, Shrestha A. Identifying drug-resistant tuberculosis from chest X-ray images using a simple convolutional neural network. J Phys Conf Ser, 2021, 2071(1): 012001. doi:10.1088/1742-6596/2071/1/012001. |
[46] |
Tulo SK, Ramu P, Swaminathan R. An Automated Approach to Differentiate Drug Resistant Tuberculosis in Chest X-ray Images Using Projection Profiling and Mediastinal Features. Stud Health Technol Inform, 2021, 281:512-513. doi:10.3233/SHTI210220.
pmid: 34042626 |
[47] | Prasitpuriprecha C, Jantama SS, Preeprem T, et al. Drug-Resistant Tuberculosis Treatment Recommendation, and Multi-Class Tuberculosis Detection and Classification Using Ensemble Deep Learning-Based System. Pharmaceuticals (Basel), 2022, 16(1):13. doi:10.3390/ph16010013. |
[48] | Sethanan K, Pitakaso R, Srichok T, et al. Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification. Front Med (Lausanne), 2023, 10:1122222. doi:10.3389/fmed.2023.1122222. |
[49] | Nijiati M, Guo L, Tuersun A, et al. Deep learning on longitudinal CT scans: automated prediction of treatment outcomes in hospitalized tuberculosis patients. iScience, 2023, 26(11):108326. doi:10.1016/j.isci.2023.108326. |
[50] | Wells L, Bednarz T. Explainable AI and Reinforcement Learning-A Systematic Review of Current Approaches and Trends. Front Artif Intell, 2021, 4:550030. doi:10.3389/frai.2021.550030. |
[51] | Liang S, Ma J, Wang G, et al. The Application of Artificial Intelligence in the Diagnosis and Drug Resistance Prediction of Pulmonary Tuberculosis. Front Med (Lausanne), 2022, 9:935080. doi:10.3389/fmed.2022.935080. |
[52] | Acharya V, Dhiman G, Prakasha K, et al. AI-Assisted Tuberculosis Detection and Classification from Chest X-Rays Using a Deep Learning Normalization-Free Network Model. Comput Intell Neurosci, 2022, 2022: 2399428. doi:10.1155/2022/2399428. |
[1] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[2] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[3] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[4] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[5] | Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. |
[6] | Shang Xuetian, Pan Liping. Role of tissue kallikrein family in pathogenesis of microorganism infection [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 239-244. |
[7] | Chen Yujie, Wang Linghua, Cheng Xiaoyan, Li Huiyuan. Research progress on latent tuberculosis infection in medical staff [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1541-1547. |
[8] | He Jing, Zhang Zhongfa. Research progress on mixed infection in pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1566-1572. |
[9] | Li Chaofan, Chen Zhi. Advances in the application of animal models and 3D cell models in tuberculosis research [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1527-1534. |
[10] | Wang Yujin, Chu Naihui, Nie Wenjuan. Research progress in the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2024, 46(11): 1395-1399. |
[11] | Yan Hongxuan, Yuan Jinfeng, Wang Yilin, Pang Yu, Gao Mengqiu. Advances in the host-directed therapy of tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1273-1282. |
[12] | Liu Kejun, Zhang Haipeng, Wang Peng. Overview of genomic research on Mycobacteriophages [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1283-1292. |
[13] | Wang Jiani, Xi Mingxia. Progress in catastrophic health expenditures for tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 112-118. |
[14] | Du Yu, Zhang Haipeng, Wang Peng. Research status and application progress of mycobacteria phages [J]. Chinese Journal of Antituberculosis, 2023, 45(9): 897-903. |
[15] | Bi Xiuli, Geng Hong, Jin Jin. The role of myeloid system and CD4+T cells in Mycobacterium tuberculosis infection and immunopathology [J]. Chinese Journal of Antituberculosis, 2023, 45(9): 904-912. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||