Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (12): 1566-1572.doi: 10.19982/j.issn.1000-6621.20240312
• Review Articles • Previous Articles Next Articles
Received:
2024-07-29
Online:
2024-12-10
Published:
2024-12-03
Contact:
Zhang zhongfa,Email: zzf235@163.com
Supported by:
CLC Number:
He Jing, Zhang Zhongfa. Research progress on mixed infection in pulmonary tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1566-1572. doi: 10.19982/j.issn.1000-6621.20240312
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240312
研究者 | 国家 | 菌株数量 | 优势菌种及其所占比例 |
---|---|---|---|
Langbang等[ | 印度 | 50 | 金黄色葡萄球菌(32%,16/50) 铜绿假单胞菌(16%,8/50) |
Udeani等[ | 尼日利亚 | 119 | 金黄色葡萄球菌(40.3%,48/119) 化脓性链球菌(32.8%,39/119) |
Iliyasu等[ | 尼日利亚 | 141 | 肺炎链球菌(44.7%,63/141) 大肠埃希菌(18.4%,26/141) |
Attia等[ | 柬埔寨 | 13 | 肺炎克雷伯杆菌(46%,6/13) 铜绿假单胞菌(23%,3/13) |
王东萍等[ | 中国 | 110 | 肺炎克雷伯杆菌(13.6%,15/110) 鲍曼不动杆菌(11.8%,13/110) |
李红艳等[ | 中国 | 847 | 铜绿假单胞菌(33.2%,281/847) 肺炎克雷伯杆菌(22.6%,191/847) |
杨丽梅等[ | 中国 | 413 | 铜绿假单胞菌(22.3%,92/413) 肺炎克雷伯杆菌(14.8%,61/413) |
Aldriwesh等[ | 沙特阿拉伯 | 84 | 铜绿假单胞菌(36.9%,31/84) 肺炎克雷伯杆菌(26.2%,22/84) |
陈影影等[ | 中国 | 161 | 肺炎克雷伯杆菌(26.1%,42/161) 阴沟肠杆菌(18.6%,30/161) |
[1] | 舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(1): 15-19. doi:10.19983/j.issn.2096-8493.2024006. |
[2] | Hong BY, Maulén NP, Adami AJ, et al. Microbiome Changes during Tuberculosis and Antituberculous Therapy. Clin Microbiol Rev, 2016, 29(4):915-926. doi:10.1128/CMR.00096-15. |
[3] |
Regmi RS, Khadka S, Sapkota S, et al. Bacterial etiology of sputum from tuberculosis suspected patients and antibiogram of the isolates. BMC Res Notes, 2020, 13(1):520. doi:10.1186/s13104-020-05369-8.
pmid: 33172496 |
[4] |
Shimazaki T, Taniguchi T, Saludar NRD, et al. Bacterial co-infection and early mortality among pulmonary tuberculosis patients in Manila, The Philippines. Int J Tuberc Lung Dis, 2018, 22(1):65-72. doi:10.5588/ijtld.17.0389.
pmid: 29297428 |
[5] | Langbang A, Deka N, Rahman H, et al. A Study on Bacterial Pathogens causing Secondary Infections in Patients Suffering from Tuberculosis and their Pattern of Antibiotic Sensitivity. Inter J Current Microbiol App Sci, 2016, 5:197-203. doi:10.20546/ijcmas.2016.508.021. |
[6] | Udeani TK, Moses J, Uzoechina A, et al. Microbial aetiologic agents associated with pneumonia in immunocompromised hosts. Afr J Infect Dis, 2010, 4(1):1-6. doi:10.4314/ajid.v4i1.55084. |
[7] | Iliyasu G, Mohammad AB, Yakasai AM, et al. Gram-negative bacilli are a major cause of secondary pneumonia in patients with pulmonary tuberculosis: evidence from a cross-sectional study in a tertiary hospital in Nigeria. Trans R Soc Trop Med Hyg, 2018, 112(5):252-254. doi:10.1093/trstmh/try044. |
[8] |
Attia EF, Pho Y, Nhem S, et al. Tuberculosis and other bacterial co-infection in Cambodia: a single center retrospective cross-sectional study. BMC Pulm Med, 2019, 19(1):60. doi:10.1186/s12890-019-0828-4.
pmid: 30866909 |
[9] | 刘冠, 赵雁林. 肺结核患者呼吸道菌群研究简述. 中国防痨杂志, 2010, 32(5):293-295. |
[10] | 王东萍, 杨静, 王庆. 肺结核合并肺部感染病原菌分布及耐药性分析. 临床肺科杂志, 2012, 17(3):469-470. doi:10.3969/j.issn.1009-6663.2012.03.039. |
[11] | 李红艳, 邹盛华, 张丽水, 等. 肺结核合并肺部感染的病原菌分布及药敏分析. 临床肺科杂志, 2011, 16(11):1717-1720. doi:10.3969/j.issn.1009-6663.2011.11.030. |
[12] | 杨丽梅, 勾秀丽, 郭艳玲, 等. 肺结核患者合并肺部感染的病原菌分布及耐药性分析. 国际检验医学杂志, 2012, 33(10):1201-1203. doi:10.3969/j.issn.1673-4130.2012.10.025. |
[13] | Hamde F, Chala B, Bekele M, et al. Isolation and Antimicrobial Resistance Patterns of Bacterial Pathogens from Community-Acquired Pneumonia at Adama Hospital Medical College, Adama, Ethiopia. J Trop Med, 2024,2024:8710163. doi:10.1155/2024/8710163. |
[14] | 朱浩, 胡君, 张华芳, 等. 肺结核患者肺部感染的病原菌分布与耐药性分析. 中华医院感染学杂志, 2015(1):51-53. doi:10.11816/cn.ni.2015-142964. |
[15] | 王敏媛, 王彪, 仵倩红. 某院2019年—2022年肺结核合并下呼吸道感染患者中革兰阴性菌的检出情况及其耐药变迁分析. 抗感染药学, 2023, 20(7):755-762. doi:10.13493/j.issn.1672-7878.2023.07-0022. |
[16] |
Aldriwesh MG, Alaqeel RA, Mashraqi AM, et al. Coinfection of pulmonary tuberculosis with other lower respiratory tract infections: A retrospective cross-sectional study. Ann Thorac Med, 2022, 17(4):229-236. doi:10.4103/atm.atm_200_22.
pmid: 36387752 |
[17] | 陈影影, 施旭东, 黄菁, 等. 肺结核患者CD4+T淋巴细胞计数水平与下呼吸道病原菌感染类型及耐药性的关系. 临床检验杂志, 2023, 41(11):827-831. doi:10.13602/j.cnki.jcls.2023.11.06. |
[18] |
Nachbagauer R, Choi A, Hirsh A, et al. Defining the antibody cross-reactome directed against the influenza virus surface glycoproteins. Nat Immunol, 2017, 18(4):464-473. doi:10.1038/ni.3684.
pmid: 28192418 |
[19] | Walaza S, Cohen C, Tempia S, et al. Influenza and tuberculosis co-infection: A systematic review. Influenza Other Respir Viruses, 2020, 14(1):77-91. doi:10.1111/irv.12670. |
[20] |
Volkert M, Pierce C, Horsfall FL, et al. The enhancing effect of concurrent infection with pneumotropic viruse on pulmonary tubercuulosis in mice. J Exp Med, 1947, 86(3):203-214. doi:10.1084/jem.86.3.203.
pmid: 19871671 |
[21] | Walaza S, Tempia S, Dawood H, et al. Influenza virus infection is associated with increased risk of death amongst patients hospitalized with confirmed pulmonary tuberculosis in South Africa,2010-2011. BMC Infect Dis, 2015,15:26. doi:10.1186/s12879-015-0746-x. |
[22] | Puvanalingam A, Rajendiran C, Sivasubramanian K, et al. Case series study of the clinical profile of H1N1 swine flu influenza. J Assoc Physicians India, 2011,59:14-16, 18. |
[23] |
Abadom TR, Smith AD, Tempia S, et al. Risk factors associated with hospitalisation for influenza-associated severe acute respiratory illness in South Africa: A case-population study. Vaccine, 2016, 34(46):5649-5655. doi:10.1016/j.vaccine.2016.09.011.
pmid: 27720448 |
[24] | Walaza S, Tempia S, Dawood H, et al. The Impact of Influenza and Tuberculosis Interaction on Mortality Among Individuals Aged ≥15 Years Hospitalized With Severe Respiratory Illness in South Africa, 2010-2016. Open Forum Infect Dis, 2019, 6(3):ofz20. doi:10.1093/ofid/ofz020. |
[25] | de Paus RA, van Crevel R, van Beek R, et al. The influence of influenza virus infections on the development of tuberculosis. Tuberculosis (Edinb), 2013, 93(3):338-342. doi:10.1016/j.tube.2013.02.006. |
[26] | Roth S, Whitehead S, Thamthitiwat S, et al. Concurrent influenza virus infection and tuberculosis in patients hospitalized with respiratory illness in Thailand. Influenza Other Respir Viruses, 2013, 7(3):244-248. doi:10.1111/j.1750-2659.2012.00413.x. |
[27] | Walaza S, Cohen C, Nanoo A, et al. Excess Mortality Associated with Influenza among Tuberculosis Deaths in South Africa, 1999—2009. PLoS One, 2015, 10(6):e129173. doi:10.1371/journal.pone.0129173. |
[28] | 张福杰, 王卓, 王全红, 等. 新型冠状病毒感染者抗病毒治疗专家共识. 中华临床感染病杂志, 2023, 16(1):10-20. doi:10.3760/cma.j.issn.1674-2397.2023.01.002. |
[29] | Riou C, du Bruyn E, Stek C, et al. Relationship of SARS-CoV-2-specific CD 4 response to COVID-19 severity and impact of HIV-1 and tuberculosis coinfection. J Clin Invest, 2021, 131(12). doi:10.1172/JCI149125. |
[30] | Booysen P, Wilkinson KA, Sheerin D, et al. Immune interaction between SARS-CoV-2 and Mycobacterium tuberculosis. Front Immunol, 2023,14:1254206. doi:10.3389/fimmu.2023.1254206. |
[31] | Osman NM, Gomaa AA, Sayed NM, et al. Microarray detection of fungal infection in pulmonary tuberculosis. Egypt J Chest Dis Tuberc, 2013, 62(1):151-157. doi:10.1016/j.ejcdt.2013.02.002. |
[32] | Muni S, Rajpal K, Kumar R, et al. Identification of Fungal Isolates in Patients With Pulmonary Tuberculosis Treated at a Tertiary Care Hospital. Cureus, 2023, 15(4):e37664. doi:10.7759/cureus.37664. |
[33] | Hosseini M, Shakerimoghaddam A, Ghazalibina M, et al. Aspergillus coinfection among patients with pulmonary tuberculosis in Asia and Africa countries; A systematic review and meta-analysis of cross-sectional studies. Microb Pathog, 2020,141:104018. doi:10.1016/j.micpath.2020.104018. |
[34] | Astekar M, Bhatiya PS, Sowmya GV. Prevalence and characterization of opportunistic candidal infections among patients with pulmonary tuberculosis. J Oral Maxillofac Pathol, 2016, 20(2):183-189. doi:10.4103/0973-029X.185913. |
[35] |
Soedarsono S, Prasetiyo YD, Mertaniasih M. Fungal isolates findings of sputum samples in new and previously treated cases of pulmonary tuberculosis in dr. soetomo hospital surabaya, Indonesia. Int J Mycobacteriol, 2020, 9(2):190-194. doi:10.4103/ijmy.ijmy_1_20.
pmid: 32474542 |
[36] |
Yan H, Guo L, Pang Y, et al. Clinical characteristics and predictive model of pulmonary tuberculosis patients with pulmonary fungal coinfection. BMC Pulm Med, 2023, 23(1):56. doi:10.1186/s12890-023-02344-4.
pmid: 36750804 |
[37] | 周丹, 黄胜, 胡雅萍, 等. 肺结核并发真菌感染CT影像特征及miR-29a-3p、miR-223-3p、IFN-γ、IL-23R水平. 中华医院感染学杂志, 2024, 34(19):2947-2951. doi:10.11816/cn.ni.2024-240175. |
[38] | Tarashi S, Fateh A, Mirsaeidi M, et al. Mixed infections in tuberculosis: The missing part in a puzzle. Tuberculosis (Edinb), 2017, 107:168-174. doi:10.1016/j.tube.2017.09.004. |
[39] | Gan M, Liu Q, Yang C, et al. Deep Whole-Genome Sequencing to Detect Mixed Infection of Mycobacterium tuberculosis. PLoS One, 2016, 11(7):e159029. doi:10.1371/journal.pone.0159029. |
[40] |
Kargarpour Kamakoli M, Farmanfarmaei G, Masoumi M, et al. Prediction of the hidden genotype of mixed infection strains in Iranian tuberculosis patients. Int J Infect Dis, 2020, 95:22-27. doi:10.1016/j.ijid.2020.03.056.
pmid: 32251801 |
[41] | Drain PK, Bajema KL, Dowdy D, et al. Incipient and Subclinical Tuberculosis: a Clinical Review of Early Stages and Progression of Infection. Clin Microbiol Rev, 2018, 31(4): e00021-18. doi:10.1128/CMR.00021-18. |
[42] |
Micheni L N, Deyno S, Bazira J. Mycobacterium tuberculosis mixed infections and drug resistance in sub-Saharan Africa: a systematic review. Afr Health Sci, 2022, 22(1):560-572. doi:10.4314/ahs.v22i1.65.
pmid: 36032443 |
[43] | Lapa S, Kuzmin A, Сhernousova L, et al. Spoligotyping of the Mycobacterium tuberculosis complex using on-Chip PCR. J Appl Microbiol, 2022, 16:lxac046. doi:10.1093/jambio/lxac046. |
[44] | Cave MD, Eisenach KD, Mcdermott PF, et al. IS6110: Conservation of sequence in the Mycobacterium tuberculosis complex and its utilization in DNA fingerprinting. Mol Cell Probes, 1991, 5(1):73-80. doi:10.1016/0890-8508(91)90040-Q. |
[45] | Tazi L, Reintjes R, Bañuls A. Tuberculosis transmission in a high incidence area: A retrospective molecular epidemiological study of Mycobacterium tuberculosis in Casablanca, Morocco. Infect Genet Evol, 2007, 7(5):636-644. doi:10.1016/j.meegid.2007.06.005. |
[46] | Mazars E, Lesjean S, Banuls AL, et al. High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci U S A, 2001, 98(4):1901-1906. doi:10.1073/pnas.98.4.1901. |
[47] |
Pang Y, Zhou Y, Wang S, et al. Prevalence and risk factors of mixed Mycobacterium tuberculosis complex infections in China. J Infect, 2015, 71(2):231-237. doi:10.1016/j.jinf.2015.03.012.
pmid: 25936744 |
[48] | Kargarpour Kamakoli M, Sadegh HR, Farmanfarmaei G, et al. Evaluation of the impact of polyclonal infection and heteroresistance on treatment of tuberculosis patients. Sci Rep, 2017,7:41410. doi:10.1038/srep41410. |
[49] | Haworth CS, Banks J, Capstick T, et al. British Thoracic Society guidelines for the management of non-tuberculous mycobacterial pulmonary disease (NTM-PD). Thorax, 2017, 72(Suppl 2):ii1-ii64. doi:10.1136/thoraxjnl-2017-210927. |
[50] | Huang M, Tan Y, Zhang X, et al. Effect of Mixed Infections with Mycobacterium tuberculosis and Nontuberculous Mycobacteria on Diagnosis of Multidrug-Resistant Tuberculosis: A Retrospective Multicentre Study in China. Infect Drug Resist, 2022, 15:157-166. doi:10.2147/IDR.S341817. |
[51] | 中华医学会结核病学分会. 非结核分枝杆菌病诊断与治疗指南(2020年版). 中华结核和呼吸杂志, 2020, 43(11):918-946. doi:10.3760/cma.j.cn112147-20200508-00570. |
[52] |
Daley CL, Iaccarino JM, Lange C, et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin Infect Dis, 2020, 71(4):905-913. doi:10.1093/cid/ciaa1125.
pmid: 32797222 |
[53] | Orujyan D, Narinyan W, Rangarajan S, et al. Protective Efficacy of BCG Vaccine against Mycobacterium leprae and Non-Tuberculous Mycobacterial Infections. Vaccines (Basel), 2022, 10(3):390. doi:10.3390/vaccines10030390. |
[54] | Komine-Aizawa S, Mizuno S, Matsuo K, et al. Recombinant BCG-Prime and DNA-Boost Immunization Confers Mice with Enhanced Protection against Mycobacterium kansasii. Vaccines (Basel), 2021, 9(11):1260. doi:10.3390/vaccines9111260. |
[55] | Bell L, Noursadeghi M. Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nat Rev Microbiol, 2018, 16(2):80-90. doi:10.1038/nrmicro.2017.128. |
[56] |
Tamuzi JL, Ayele BT, Shumba CS, et al. Implications of COVID-19 in high burden countries for HIV/TB: A systematic review of evidence. BMC Infect Dis, 2020, 20(1):744. doi:10.1186/s12879-020-05450-4.
pmid: 33036570 |
[57] | Prommongkol B, Putcharoen O, Patamatamkul S. Prevalence and incidence rates of tuberculosis in people with HIV during the coronavirus 2019 pandemic: a single center retrospective analysis. HIV Res Clin Pract, 2024, 25(1):2348935. doi:org/10.1080/25787489.2024.2348935. |
[58] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 6: Tuberculosis and comorbidities. Geneva: World Health Organization, 2024. |
[59] | World Health Organization. Updated recommendations on HIV prevention, infant diagnosis, antiretroviral initiation and monitoring. Geneva:World Health Organization, 2021. |
[60] | Khan PY, Yates TA, Osman M, et al. Transmission of drug-resistant tuberculosis in HIV-endemic settings. Lancet Infect Dis, 2019, 19(3):e77-e88. doi:0.1016/S1473-3099(18)30537-1. |
[61] |
Sultana ZZ, Hoque FU, Beyene J, et al. HIV infection and multidrug resistant tuberculosis: a systematic review and meta-analysis. BMC Infect Dis, 2021, 21(1):51. doi:10.1186/s12879-020-05749-2.
pmid: 33430786 |
[62] | Le X, Qian X, Liu L, et al. Trends in and Risk Factors for Drug Resistance in Mycobacterium tuberculosis in HIV-Infected Patients. Viruses, 2024, 16(4):627. doi:10.3390/v16040627. |
[1] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[2] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[3] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[4] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[5] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[6] | Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. |
[7] | Shang Xuetian, Pan Liping. Role of tissue kallikrein family in pathogenesis of microorganism infection [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 239-244. |
[8] | Chen Yujie, Wang Linghua, Cheng Xiaoyan, Li Huiyuan. Research progress on latent tuberculosis infection in medical staff [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1541-1547. |
[9] | Li Chaofan, Chen Zhi. Advances in the application of animal models and 3D cell models in tuberculosis research [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1527-1534. |
[10] | Wang Yujin, Chu Naihui, Nie Wenjuan. Research progress in the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2024, 46(11): 1395-1399. |
[11] | Chen Zhenhua, Guo Jingwei, Wang Jue, Hu Peilei, Yi Songlin, Liu Yi, Tan Yunhong. Study on detection methods of mixed infection with Mycobacterium tuberculosis complex and nontuberculous mycobacteria based on BACTEC MGIT 960 culture [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1243-1249. |
[12] | Yan Hongxuan, Yuan Jinfeng, Wang Yilin, Pang Yu, Gao Mengqiu. Advances in the host-directed therapy of tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1273-1282. |
[13] | Liu Kejun, Zhang Haipeng, Wang Peng. Overview of genomic research on Mycobacteriophages [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1283-1292. |
[14] | Wang Jiani, Xi Mingxia. Progress in catastrophic health expenditures for tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 112-118. |
[15] | Du Yu, Zhang Haipeng, Wang Peng. Research status and application progress of mycobacteria phages [J]. Chinese Journal of Antituberculosis, 2023, 45(9): 897-903. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||