Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (10): 1283-1292.doi: 10.19982/j.issn.1000-6621.20240217
• Review Articles • Previous Articles
Liu Kejun1,2, Zhang Haipeng2, Wang Peng1,2()
Received:
2024-05-28
Online:
2024-10-10
Published:
2024-09-29
Contact:
Wang Peng, Email: Supported by:
CLC Number:
Liu Kejun, Zhang Haipeng, Wang Peng. Overview of genomic research on Mycobacteriophages[J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1283-1292. doi: 10.19982/j.issn.1000-6621.20240217
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240217
簇 | 亚簇 | 成员 数量 | 平均长度 (bp) | 平均GC %含量 | 平均基 因数量 | 平均tRNA 基因数量 | 簇 | 亚簇 | 成员 数量 | 平均长度 (bp) | 平均GC %含量 | 平均基 因数量 | 平均tRNA 基因数量 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 19 | 770 | 51603 | 63.3 | 90.5 | 1.2 | R | 0 | 10 | 71339 | 56.0 | 98 | 0 |
B | 13 | 415 | 68822 | 67.1 | 98.3 | 0 | S | 0 | 19 | 64972 | 63.4 | 107 | 0 |
C | 2 | 188 | 155628 | 64.7 | 230.5 | 32.9 | T | 0 | 7 | 42746 | 66.2 | 61 | - |
D | 2 | 22 | 64789 | 59.6 | 88.8 | 0 | U | 0 | 3 | 66864 | 50.4 | 104 | 1 |
E | 0 | 130 | 75493 | 63.0 | 142.6 | 1.9 | V | 0 | 5 | 77907 | 56.9 | 145.3 | 23.3 |
F | 5 | 237 | 57338 | 61.5 | 104.1 | 0 | W | 0 | 6 | 61013 | 67.5 | - | - |
G | 5 | 70 | 42363 | 66.9 | 62 | 0 | X | 0 | 2 | 88037 | 56.7 | - | - |
H | 2 | 12 | 69127 | 57.3 | 98.7 | 0 | Y | 0 | 4 | 76836 | 66.7 | - | - |
I | 2 | 7 | 50320 | 66.4 | 80.2 | 0 | Z | 0 | 2 | 50807 | 66.0 | - | - |
J | 0 | 43 | 111094 | 60.9 | 235.3 | 1.6 | AA | 0 | 2 | 140785 | 67.4 | - | - |
K | 8 | 185 | 59991 | 66.8 | 93.6 | 0.9 | AB | 0 | 5 | 49672 | 58.6 | 71 | 0 |
L | 5 | 76 | 74381 | 58.9 | 124.7 | 10.3 | AC | 0 | 4 | 70029 | 49.8 | - | - |
M | 3 | 20 | 81622 | 61.3 | 141.3 | 18.7 | AD | 0 | 4 | 64670 | 66.1 | 93 | 0 |
N | 0 | 43 | 42941 | 66.2 | 68.9 | 0 | AE | 0 | 3 | 71540 | 58.8 | - | - |
O | 0 | 28 | 71124 | 65.4 | 121.1 | 0 | AF | 0 | 2 | 62538 | 65.2 | - | - |
P | 6 | 49 | 47839 | 67.0 | 79.3 | 0 | AG | 0 | 2 | 55047 | 66.0 | - | - |
Q | 0 | 22 | 53835 | 67.4 | 81 | 0 | AH | 0 | 2 | 54800 | 70.4 | - | - |
噬菌体名称 | 宿主菌 | 菌种 | 簇 | 基因长度(bp) | GC%含量 | 发现年份 | 发现地 |
---|---|---|---|---|---|---|---|
StAugustine | 耻垢分枝杆菌 | mc2155 | 单胞体 | 101031 | 65.7 | 2023 | 佐治亚州,美国 |
P3MA | 脓肿分枝杆菌 | 330 | 单胞体 | 41234 | 63.4 | 2023 | 未知 |
MooMoo | 耻垢分枝杆菌 | mc2155 | 单胞体 | 55178 | 62.0 | 2011 | 肯塔基州,美国 |
LilSpotty | 耻垢分枝杆菌 | mc2155 | 单胞体 | 49798 | 64.7 | 2018 | 加尼福利亚州,美国 |
Kumao | 耻垢分枝杆菌 | mc2155 | 单胞体 | 70373 | 62.1 | 2015 | 宾夕法尼亚州,美国 |
IdentityCrisis | 耻垢分枝杆菌 | mc2155 | 单胞体 | 38341 | 65.0 | 2018 | 佛罗里达州,美国 |
DS6A | 结核分枝杆菌 | H37Rv | 单胞体 | 60588 | 68.4 | 1960 | 未知 |
平均 | - | - | - | 59506 | 64.5 | - | - |
[1] |
Honda JR, Virdi R, Chan ED, et al. Global Environmental Nontuberculous Mycobacteria and Their Contemporaneous Man-Made and Natural Niches. Front Microbiol, 2018, 9:2029. doi:10.3389/fmicb.2018.02029.
pmid: 30214436 |
[2] | 白慧玲, 王进, 王爱华. 医学免疫学与病原生物学. 郑州: 郑州大学出版社, 2008: 252-262. |
[3] | Dedrick RM, Guerrero-Bustamante CA, Garlena RA, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med, 2019, 25(5): 730-733. doi:10.1038/s41591-019-0437-z. |
[4] | Raj CV, Ramakrishnan T. Transduction in Mycobacterium smegmatis. Nature, 1970, 228 (5268): 280-281. doi:10.1038/228280b0. |
[5] | Nick JA, Dedrick RM, Gray AL, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185(11): 1860-1874.e12. doi:10.1016/j.cell.2022.04.024. |
[6] |
Hatfull GF, Pedulla ML, Jacobs-Sera D, et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet, 2006, 2(6): e92. doi:10.1371/journal.pgen.0020092.
pmid: 16789831 |
[7] |
Hatfull GF, Cresawn SG, Hendrix RW. Comparative genomics of the mycobacteriophages: insights into bacteriophage evolution. Res Microbiol, 2008, 159(5):332-339. doi:10.1016/j.resmic.2008.04.008.
pmid: 18653319 |
[8] | Hatfull GF. Molecular Genetics of Mycobacteriophages. Microbiol Spectr, 2014, 2(2). doi:10.1128/microbiolspec.MGM2-0032-2013. |
[9] | Hatfull GF. Mycobacteriophages. Microbiol Spectr, 2018, 6(5):10.1128/microbiolspec.GPP3-0026-2018. doi:10.1128/microbiolspec.GPP3-0026-2018. |
[10] |
Hatfull GF, Sarkis GJ. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol, 1993, 7 (3): 395-405. doi:10.1111/j.1365-2958.1993.tb01131.x.
pmid: 8459766 |
[11] | 刘文, 胡巍, 王洪海. 分枝杆菌噬菌体的分子生物学研究进展及其应用. 微生物学通报, 1999, 26 (1):58-62. doi:10.13344/j.microbiol.china.1999.01.020. |
[12] |
Ford ME, Sarkis GJ, Belanger AE, et al. Genome structure of mycobacteriophage D29: implications for phage evolution. J Mol Biol, 1998, 279(1): 143-164. doi:10.1006/jmbi.1997.1610.
pmid: 9636706 |
[13] | 包孟, 付玉荣, 伊正君. 分枝杆菌噬菌体D29 LysinB的表达及生物信息学分析. 中国病原生物学杂志, 2017, 12(2):106-109. doi:10.13350/j.cjpb.170203. |
[14] | Timme TL, Brennan PJ. Induction of bacteriophage from members of the Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum serocomplex. J General mMicrobiol, 1984, 130 (8): 2059-2066. doi:10.1099/00221287-130-8-2059. |
[15] | Jacobs WR Jr, Tuckman M, Bloom BR. Introduction of foreign DNA into mycobacteria using a shuttle phasmid. Nature, 1987, 327 (6122): 532-535. doi:10.1038/327532a0. |
[16] |
Rybniker J, Kramme S, Small PL. Host range of 14 mycobacteriophages in Mycobacterium ulcerans and seven other mycobacteria including Mycobacterium tuberculosis-application for identification and susceptibility testing. J Med Microbiol, 2006, 55 (Pt 1): 37-42. doi:10.1099/jmm.0.46238-0.
pmid: 16388028 |
[17] |
Jacobs WR Jr, Barletta RG, Udani R, et al. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science, 1993, 260(5109): 819-822. doi:10.1126/science.8484123.
pmid: 8484123 |
[18] | Ford ME, Stenatrom C, Hendrix RW, et al. Mycobacteriophage TM4: genome structure and gene expression. Tuber Lung Dis, 1998, 79 (2): 63-73. doi:10.1054/tuld.1998.0007. |
[19] | 刘平. 分枝杆菌噬菌体的生物学特性及基因组学研究. 重庆:重庆医科大学, 2012. |
[20] | Fan X, Teng T, Xie J, et al. Biology of a novel mycobacterio-phage, SWU1, isolated from Chinese soil as revealed by genomic characteristics. J Virol, 2012, 86(18):10230-10231. doi:10.1128/JVI.01568-12. |
[21] | 樊祥宇. 分枝杆菌噬菌体的系统生物学研究. 重庆: 西南大学, 2014. |
[22] | 苏胜兵. 分枝杆菌烈性噬菌体的分离鉴定及其裂解酶基因的克隆与序列分析. 长春: 吉林农业大学, 2012. |
[23] |
Fan X, Gao X, Xie J, et al. Complete genome sequence analysis of the novel mycobacteriophage Shandong1. Arch Virol, 2017, 162(12):3903-3905. doi:10.1007/s00705-017-3534-7.
pmid: 28828700 |
[24] | Gong Z, Lv X, Xie J, et al. Genomic and proteomic portrait of a novel mycobacteriophage SWU2 isolated from China. Infect Genet Evol, 2021, 87:104665. doi:10.1016/j.meegid.2020.104665. |
[25] | Pope WH, Bowman CA, Russell DA, et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife, 2015, 4:e06416. doi:10.7554/eLife.06416. |
[26] |
Voronina OL, Kunda MS, Aksenova EI, et al. Mosaic structure of Mycobacterium bovis BCG genomes as a representation of phage sequences’ mobility. BMC Genomics, 2016, 17(Suppl 14): 1009. doi:10.1186/s12864-016-3355-1.
pmid: 28105923 |
[27] | Sinha A, Eniyan K, Bajpai U, et al. Characterization and genome analysis of B 1 sub-cluster mycobacteriophage PDRPxv. Virus Res, 2020, 279:197884. doi:10.1016/j.virusres.2020.197884. |
[28] | Hatfull GF, Jacobs-Sera D, Lawrence JG, et al. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol, 2010, 397 (1): 119-143. doi:10.1016/j.jmb.2010.01.011. |
[29] |
Hatfull GF. Mycobacteriophages: genes and genomes. Annu Rev Microbiol, 2010, 64:331-356. doi:10.1146/annurev.micro.112408.134233.
pmid: 20528690 |
[30] | Zheng H, Olia AS, Gonen M, et al. A conformational switch in bacteriophage p 22 portal protein primes genome injection. Mol Cell, 2008, 29(3):376-383. doi:10.1016/j.molcel.2007.11.034. |
[31] | Hatfull GF. Mycobacteriophages: From Petri dish to patient. PLoS Pathog, 2022, 18(7):e1010602. doi:10.1371/journal.ppat.1010602. |
[32] |
Garcia M, Pimentel M, Moniz-Pereira J. Expression of Mycobacteriophage Ms6 lysis genes is driven by two sigma(70)-like promoters and is dependent on a transcription termination signal present in the leader RNA. J Bacteriol, 2002, 184(11): 3034-3043. doi:10.1128/JB.184.11.3034-3043.2002.
pmid: 12003945 |
[33] | Pham TT, Jacobs-Sera D, Pedulla ML, et al. Comparative genomic analysis of mycobacteriophage Tweety: evolutionary insights and construction of compatible site-specific integration vectors for mycobacteria. Microbiology (Reading), 2007, 153(Pt 8): 2711-2723. doi:10.1099/mic.0.2007/008904-0. |
[34] |
Zeynali Kelishomi F, Khanjani S, Fardsanei F, et al. Bacteriophages of Mycobacterium tuberculosis, their diversity, and potential therapeutic uses: a review. BMC Infect Dis, 2022, 22(1):957. doi:10.1186/s12879-022-07944-9.
pmid: 36550444 |
[35] | Catalão MJ, Pimentel M. Mycobacteriophage Lysis Enzymes: Targeting the Mycobacterial Cell Envelope. Viruses, 2018, 10(8):428. doi:10.3390/v10080428. |
[36] |
Yang H, Yu J, Wei H. Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol, 2014, 5:542. doi:10.3389/fmicb.2014.00542.
pmid: 25360133 |
[37] | 宋磊. 分枝杆菌噬菌体L5 LysA、LysB的表达及活性研究. 长春: 吉林农业大学, 2014. |
[38] |
Kamilla S, Jain V. Mycobacteriophage D29 holin C-terminal region functionally assists in holin aggregation and bacterial cell death. FEBS J, 2016, 283 (1): 173-190. doi:10.1111/febs.13565.
pmid: 26471254 |
[39] | Catalão MJ, Gil F, Moniz-Pereira J, et al. Diversity in bacterial lysis systems: bacteriophages show the way. FEMS Microbiol Rev, 2013, 37(4): 554-571. doi:10.1111/1574-6976.12006. |
[40] | Peña CE, Kahlenberg JM, Hatfull GF. Assembly and activation of site-specific recombination complexes. Proc Natl Acad Sci U S A, 2000, 97(14): 7760-7765. doi:10.1073/pnas.140014297. |
[41] | 申严杰, 胡昌华, 王洪海, 等. 分枝杆菌噬菌体整合及裂解的分子机理. 微生物学报, 2005, 45(5):808-811. doi:10.13343/j.cnki.wsxb.2005.05.034. |
[42] | Kusano K, Takahashi NK, Yoshikura H, et al. Involvement of RecE exonuclease and RecT annealing protein in DNA double-strand break repair by homologous recombination. Gene, 1994, 138(1/2):17-25. doi:10.1016/0378-1119(94)90778-1. |
[43] |
Górecka KM, Krepl M, Szlachcic A, et al. RuvC uses dynamic probing of the Holliday junction to achieve sequence specificity and efficient resolution. Nat Commun, 2019, 10(1):4102. doi:10.1038/s41467-019-11900-8.
pmid: 31506434 |
[44] |
Smith MC, Thorpe HM. Diversity in the serine recombinases. Mol Microbiol, 2002, 44(2): 299-307. doi:10.1046/j.1365-2958.2002.02891.x.
pmid: 11972771 |
[45] |
Hatfull GF. Actinobacteriophages: Genomics, Dynamics, and Applications. Annu Rev Virol, 2020, 7(1):37-61. doi:10.1146/annurev-virology-122019-070009.
pmid: 32991269 |
[46] |
Ojha A, Anand M, Bhatt A, et al. GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell, 2005, 123(5): 861-873. doi:10.1016/j.cell.2005.09.012.
pmid: 16325580 |
[47] |
Bhawsinghka N, Dutta A, Mukhopadhyay J, et al. A transcriptomic analysis of the mycobacteriophage D29 genome reveals the presence of novel stoperator-associated promoters in its right arm. Microbiology (Reading), 2018, 164(9): 1168-1179. doi:10.1099/mic.0.000693.
pmid: 30024363 |
[48] |
Li X, Long X, Chen L, et al. Mycobacterial phage TM4 requires a eukaryotic-like Ser/Thr protein kinase to silence and escape anti-phage immunity. Cell Host Microbe, 2023, 31(9): 1469-1480.e4. doi:10.1016/j.chom.2023.07.005.
pmid: 37567169 |
[49] | 丛聪. 沙门菌裂解性噬菌体的筛选、基因组学分析及其在肉鸡产品抗菌中的应用. 大连: 大连理工大学, 2021. doi:10.26991/d.cnki.gdllu.2021.004986. |
[50] | 邬亭亭. 分枝杆菌噬菌体鸡尾酒制剂应用于耐药结核病治疗的探索性研究. 重庆: 重庆医科大学, 2012. |
[51] |
Łobocka M, Dᶏbrowska K, Górski A. Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs, 2021, 35(3): 255-280. doi:10.1007/s40259-021-00480-z.
pmid: 33881767 |
[52] | 樊祥宇, 谢建平. 分枝杆菌噬菌体重组系统及其应用. 中国生物工程杂志, 2012, 32(9):101-106. doi:10.13523/j.cb.20120916. |
[53] |
Jacobs WR Jr, Snapper SB, Lugosi L, et al. Development of BCG as a recombinant vaccine vehicle. Curr Top Microbiol Immunol, 1990, 155: 153-160. doi:10.1007/978-3-642-74983-4_11.
pmid: 2407431 |
[54] | Freeman KG, Wetzel KS, Zhang Y, et al. A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display. Microorganisms, 2021, 9(12): 2414. doi:10.3390/microorganisms9122414. |
[55] | Mitsunaka S, Yamazaki K, Pramono AK, et al. Synthetic engineering and biological containment of bacteriophages. Proc Natl Acad Sci U S A, 2022, 119(48): e2206739119. doi:10.1073/pnas.2206739119. |
[56] |
Manoutcharian K. Bacteriophages as tools for vaccine and drug development. Expert Rev Vaccines, 2005, 4(1): 5-7. doi:10.1586/14760584.4.1.5.
pmid: 15757465 |
[57] | Harada LK, Silva EC, Campos WF, et al. Biotechnological applications of bacteriophages: State of the art. Microbiol Res, 2018, 212-213: 38-58. doi:10.1016/j.micres.2018.04.007. |
[58] | Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol, 2007, 73(1):347-352. doi:10.1128/AEM.01616-06. |
[59] | Son JS, Lee SJ, Jun SY, et al. Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol, 2010, 86(5): 1439-1449. doi:10.1007/s00253-009-2386-9. |
[60] |
Domenech M, García E, Moscoso M. In vitro destruction of Streptococcus pneumoniae biofilms with bacterial and phage peptidoglycan hydrolases. Antimicrob Agents Chemother, 2011, 55(9):4144-4148. doi:10.1128/AAC.00492-11.
pmid: 21746941 |
[61] | Briers Y, Walmagh M, Van Puyenbroeck V, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant gram-negative pathogens. mBio, 2014, 5(4): e01379-14. doi:10.1128/mBio.01379-14. |
[62] |
Chakraborty P, Bajeli S, Kaushal D, et al. Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nat Commun, 2021, 12(1):1606. doi:10.1038/s41467-021-21748-6.
pmid: 33707445 |
[63] |
Ackart DF, Lindsey EA, Podell BK, et al. Reversal of Mycobacterium tuberculosis phenotypic drug resistance by 2-aminoimi-dazole-based small molecules. Pathog Dis, 2014, 70 (3): 370-378. doi:10.1111/2049-632X.12143.
pmid: 24478046 |
[1] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[2] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[3] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[4] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[5] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[6] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[7] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[8] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
[9] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[10] | Tan Shouyong. Research progress on comprehensive treatment beyond antibiotic therapy for nontuberculous mycobacterium pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 967-970. |
[11] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[12] | Xia Lan, Xiao Yue, Chen Chuang, Xia Yong, Zhu Sui, Zhang Linglin. Analysis of latent tuberculosis infection and active pulmonary tuberculosis diprevalence among newly admitted students of Sichuan Province for the year 2022 [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 664-671. |
[13] | Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. |
[14] | Shang Xuetian, Dong Jing, Huang Mailing, Sun Qi, Jia Hongyan, Zhang Lanyue, Liu Qiuyue, Yao Mingxu, Wang Yingchao, Ji Xiuxiu, Du Boping, Xing Aiying, Pan Liping. Transcriptome study on peripheral blood mononuclear cells of latent tuberculosis infection individuals [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 449-460. |
[15] | Yao Yangyang, Liang Changhua, Han Dongming, Cui Junwei, Pan Ben, Wang Huihui, Wei Zhengqi, Zhen Siyu, Wei Hanyu. Differentiation of pulmonary tuberculosis and nontuberculous mycobacterial pulmonary disease based on computed tomography radiomics combined with clinical features [J]. Chinese Journal of Antituberculosis, 2024, 46(3): 302-310. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||