Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (4): 460-470.doi: 10.19982/j.issn.1000-6621.20250043
• Original Articles • Previous Articles Next Articles
Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping(), Zhang Zongde(
)
Received:
2025-01-27
Online:
2025-04-10
Published:
2025-04-02
Contact:
Zhang Zongde, Email: Supported by:
CLC Number:
Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. doi: 10.19982/j.issn.1000-6621.20250043
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20250043
聚类分析 | 条目 | 富集倍数 | P值 | 基因个数 |
---|---|---|---|---|
生物过程 | ||||
内源性凋亡信号通路 | 7.32 | 0.001 | 6 | |
mRNA运输 | 6.13 | <0.001 | 11 | |
蛋白SUMO化 | 5.75 | 0.001 | 7 | |
蛋白K48-连接泛素化 | 5.23 | <0.001 | 11 | |
蛋白质多泛素化 | 3.81 | <0.001 | 15 | |
T细胞受体信号通路 | 3.70 | 0.002 | 10 | |
泛素依赖性蛋白分解代谢过程 | 3.65 | <0.001 | 19 | |
内吞作用 | 3.13 | 0.002 | 12 | |
胞内蛋白转运 | 2.55 | 0.002 | 16 | |
RNA聚合酶Ⅱ的正向转录调控 | 1.87 | <0.001 | 52 | |
细胞组成 | ||||
泛素连接酶复合物 | 4.48 | <0.001 | 11 | |
核膜 | 3.37 | <0.001 | 19 | |
早期内体 | 2.68 | <0.001 | 18 | |
黏着斑 | 2.26 | 0.001 | 21 | |
核原生质 | 2.09 | <0.001 | 180 | |
中心体 | 2.02 | <0.001 | 29 | |
细胞溶质 | 1.78 | <0.001 | 215 | |
线粒体 | 1.70 | <0.001 | 54 | |
细胞核 | 1.63 | <0.001 | 215 | |
细胞质 | 1.51 | <0.001 | 186 | |
分子功能 | ||||
RNA茎环结合 | 9.71 | <0.001 | 6 | |
转录共调节因子活性 | 3.84 | <0.001 | 11 | |
蛋白质结构域特异性结合 | 3.22 | <0.001 | 16 | |
mRNA结合 | 2.92 | <0.001 | 18 | |
泛素蛋白连接酶活性 | 2.56 | <0.001 | 22 | |
RNA结合 | 2.16 | <0.001 | 72 | |
DNA结合 | 1.96 | <0.001 | 52 | |
ATP结合 | 1.59 | <0.001 | 56 | |
同一蛋白质的结合 | 1.56 | <0.001 | 62 | |
蛋白结合 | 1.29 | <0.001 | 377 |
条目 | 富集倍数 | P值 | 基因个数 |
---|---|---|---|
昼夜节律 | 5.49 | 0.010 | 5 |
加压素调节的水重吸收 | 5.09 | 0.006 | 6 |
铁死亡 | 4.44 | 0.030 | 5 |
范可尼贫血通路 | 4.07 | 0.020 | 6 |
mRNA监测通路 | 3.62 | 0.002 | 10 |
病毒生命周期HIV-1 | 3.55 | 0.030 | 6 |
RNA降解 | 3.35 | 0.020 | 7 |
急性髓性白血病 | 3.29 | 0.030 | 6 |
核质运输 | 3.11 | 0.008 | 9 |
结直肠癌 | 3.00 | 0.030 | 7 |
动物细胞线粒体自噬 | 2.84 | 0.020 | 8 |
流体剪切应力与动脉粥样硬化 | 2.65 | 0.010 | 10 |
神经营养因子信号通路 | 2.49 | 0.040 | 8 |
非酒精性脂肪肝 | 2.38 | 0.020 | 10 |
癌症中的蛋白聚糖 | 2.38 | 0.008 | 13 |
泛素介导的蛋白水解 | 2.36 | 0.040 | 9 |
乙型病毒性肝炎 | 2.29 | 0.030 | 10 |
沙门氏菌感染 | 2.23 | 0.007 | 15 |
EB病毒感染 | 2.02 | 0.040 | 11 |
丝裂原活化蛋白激酶信号通路 | 1.86 | 0.030 | 15 |
肌萎缩侧索硬化症 | 1.81 | 0.020 | 18 |
丁酸酯代谢 | 1.00 | 0.030 | 4 |
circRNAs | P值 | 差异倍数 | 表达趋势 |
---|---|---|---|
hsa_circ_0077995 | <0.001 | 0.148 | 下调 |
hsa_circ_0077996 | <0.001 | 0.154 | 下调 |
hsa_circ_0052125 | <0.001 | 0.106 | 下调 |
hsa_circ_0018078 | <0.001 | 0.145 | 下调 |
hsa_circ_0061268 | <0.001 | 0.232 | 下调 |
hsa_circ_0069429 | <0.001 | 0.170 | 下调 |
hsa_circ_0064077 | <0.001 | 0.159 | 下调 |
hsa_circ_0052124 | <0.001 | 0.117 | 下调 |
hsa_circ_0041779 | <0.001 | 4.048 | 上调 |
[1] | Xu G, Liu H, Jia X, et al. Mechanisms and detection methods of Mycobacterium tuberculosis rifampicin resistance: The phenomenon of drug resistance is complex. Tuberculosis (Edinb), 2021, 128: 102083. doi:10.1016/j.tube.2021.102083. |
[2] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[3] | Schito M, Migliori GB, Fletcher HA, et al. Perspectives on Advances in Tuberculosis Diagnostics, Drugs, and Vaccines. Clin Infect Dis, 2015, 61Suppl 3(Suppl 3): S102-S118. doi:10.1093/cid/civ609. |
[4] | Sheikh BA, Bhat BA, Ahmad Z, et al. Strategies Employed to Evade the Host Immune Response and the Mechanism of Drug Resistance in Mycobacterium tuberculosis: In Search of Finding New Targets. Curr Pharm Biotechnol, 2022, 23(14): 1704-1720. doi:10.2174/1389201023666211222164938. |
[5] | Jumat MI, Sarmiento ME, Acosta A, et al. Role of non-coding RNAs in tuberculosis and their potential for clinical applications. J Appl Microbiol, 2023, 134(6): lxad104. doi:10.1093/jambio/lxad104. |
[6] |
Maass PG, Glažar P, Memczak S, et al. A map of human circular RNAs in clinically relevant tissues. J Mol Med (Berl), 2017, 95(11):1179-1189. doi:10.1007/s00109-017-1582-9.
pmid: 28842720 |
[7] | Min J, Li Y, Li X, et al. The circRNA circVAMP3 restricts influenza A virus replication by interfering with NP and NS1 proteins. PLoS Pathog, 2023, 19(8): e1011577. doi:10.1371/journal.ppat.1011577. |
[8] | Hemati Z, Neamati F, Khaledi M, et al. Circular RNAs and tuberculosis infection. Int J Biol Macromol, 2023, 226: 1218-1225. doi:10.1016/j.ijbiomac.2022.11.235. |
[9] | Li Z, Gao Y, Zhang B, et al. circRNA_SLC8A1 promotes the survival of Mycobacterium tuberculosis in macrophages by upregulating expression of autophagy-related protein SQSTM1/p62 to activate the NF-kappaB pathway. Sci Rep, 2024, 14(1): 5233. doi:10.1038/s41598-024-55493-9. |
[10] | Pu X, Sheng S, Fu Y, et al. Construction of circRNA-miRNA-mRNA ceRNA regulatory network and screening of diagnostic targets for tuberculosis. Ann Med, 2024, 56(1): 2416604. doi:10.1080/07853890.2024.2416604. |
[11] | Wang L, Meng C, Long Y, et al. The hsa_circ_0082152 maintains NF-κB mRNA stability by binding to MTDH to promote anti-tuberculosis drug-induced liver injury. Int J Biol Macromol, 2024, 269(Pt 1): 131793. doi:10.1016/j.ijbiomac.2024.131793. |
[12] | Zhang J, He Y, Ruan Q, et al. The hsa_circ_0002371/hsa-miR-502-5p/ATG16L 1 axis modulates the survival of intracellular Mycobacterium tuberculosis and autophagy in macrophages. Cell Signal, 2024, 121: 111271. doi:10.1016/j.cellsig.2024.111271. |
[13] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断. 结核与肺部疾病杂志, 2024, 5 (4): 376-378. doi:10.19983/j.issn.2096-8493.2024022. |
[14] |
da Silva EH, Lima E, Dos Santos TR, et al. Prevalence and incidence of tuberculosis in health workers: A systematic review of the literature. Am J Infect Control, 2022, 50(7): 820-827. doi:10.1016/j.ajic.2022.01.021.
pmid: 35108578 |
[15] |
Shi L, Gu R, Long J, et al. Application of CRISPR-cas-based technology for the identification of tuberculosis, drug discovery and vaccine development. Mol Biol Rep, 2024, 51(1): 466. doi:10.1007/s11033-024-09424-6.
pmid: 38551745 |
[16] | Wang Q, Yang D, Zuo Y, et al. Emerging roles of circular RNAs in tuberculosis. Front Immunol, 2022, 13: 995701. doi:10.3389/fimmu.2022.995701. |
[17] |
Zhang Z, Yang T, Xiao J. Circular RNAs: Promising Biomarkers for Human Diseases. EBioMedicine, 2018, 34: 267-274. doi:10.1016/j.ebiom.2018.07.036.
pmid: 30078734 |
[18] | Ding S, Yi X, Gao J, et al. Combining bioinformatics and machine learning to identify diagnostic biomarkers of TB associated with immune cell infiltration. Tuberculosis (Edinb), 2024, 149: 102570. doi:10.1016/j.tube.2024.102570. |
[19] | Long NP, Phat NK, Yen NTH, et al. A 10-gene biosignature of tuberculosis treatment monitoring and treatment outcome prediction. Tuberculosis (Edinb), 2021, 131: 102138. doi:10.1016/j.tube.2021.102138. |
[20] | Zhong Q, Jin S, Zhang Z, et al. Identification and verification of circRNA biomarkers for coronary artery disease based on WGCNA and the LASSO algorithm. BMC Cardiovasc Disord, 2024, 24(1): 305. doi:10.1186/s12872-024-03972-2. |
[21] | Deng ZM, Dai FF, Zhou Q, et al. Hsa_circ_0000301 facilitates the progression of cervical cancer by targeting miR-1228-3p/IRF4 Axis. BMC Cancer, 2021, 21(1): 583. doi:10.1186/s12885-021-08331-4. |
[22] | Wang Z, Liu J, Wang Y, et al. Identification of Key Biomarkers Associated with Immunogenic Cell Death and Their Regulatory Mechanisms in Severe Acute Pancreatitis Based on WGCNA and Machine Learning. Int J Mol Sci, 2023, 24(3): 3033. doi:10.3390/ijms24033033. |
[23] | Hunter L, Hingley-Wilson S, Stewart GR, et al. Dynamics of Macrophage, T and B Cell Infiltration Within Pulmonary Granulomas Induced by Mycobacterium tuberculosis in Two Non-Human Primate Models of Aerosol Infection. Front Immunol, 2022, 12: 776913. doi:10.3389/fimmu.2021.776913. |
[24] | Flores-Gonzalez J, Ramón-Luing LA, Falfán-Valencia R, et al. The presence of cytotoxic CD4 and exhausted-like CD8+ T-cells is a signature of active tuberculosis. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(6): 167219. doi:10.1016/j.bbadis.2024.167219. |
[25] | Winchell CG, Nyquist SK, Chao MC, et al. CD8+ lymphocytes are critical for early control of tuberculosis in macaques. J Exp Med, 2023, 220(12): e20230707. doi:10.1084/jem.20230707. |
[26] | Kumar NP, Sridhar R, Hanna LE, et al. Decreased frequencies of circulating CD4+ T follicular helper cells associated with diminished plasma IL-21 in active pulmonary tuberculosis. PLoS One, 2014, 9(10): e111098. doi:10.1371/journal.pone.0111098. |
[27] | Bromley JD, Ganchua SKC, Nyquist SK, et al. CD4+ T cells re-wire granuloma cellularity and regulatory networks to promote immunomodulation following Mtb reinfection. Immunity, 2025, 58(2): 513-514. doi:10.1016/j.immuni.2025.01.001. |
[28] | Salzman J, Chen RE, Olsen MN, et al. Cell-type specific features of circular RNA expression. PLoS Genet, 2013, 9(9): e1003777. doi:10.1371/journal.pgen.1003777. |
[29] | Li X, Zhang B, Li F, et al. The mechanism and detection of alternative splicing events in circular RNAs. PeerJ, 2020, 8: e10032. doi:10.7717/peerj.10032. |
[30] |
Albanna AS, Bachmann K, White D, et al. Serum lipids as biomarkers for therapeutic monitoring of latent tuberculosis infection. Eur Respir J, 2013, 42(2): 547-550. doi:10.1183/09031936.00064713.
pmid: 23904552 |
[31] |
Liu J, Li Y, Wei L, et al. Screening and identification of potential biomarkers and establishment of the diagnostic serum proteomic model for the Traditional Chinese Medicine Syndromes of tuberculosis. J Ethnopharmacol, 2014, 155(2): 1322-1331. doi:10.1016/j.jep.2014.07.025.
pmid: 25072359 |
[32] |
Wang C, Li YY, Li X, et al. Serum complement C4b, fibronectin, and prolidase are associated with the pathological changes of pulmonary tuberculosis. BMC Infect Dis, 2014, 14: 52. doi:10.1186/1471-2334-14-52.
pmid: 24484408 |
[33] | Xu DD, Deng DF, Li X, et al. Discovery and identification of serum potential biomarkers for pulmonary tuberculosis using iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics, 2014, 14(2/3): 322-331. doi:10.1002/pmic.201300383. |
[34] |
Wang C, Wei LL, Shi LY, et al. Screening and identification of five serum proteins as novel potential biomarkers for cured pulmonary tuberculosis. Sci Rep, 2015, 5:15615. doi:10.1038/srep15615.
pmid: 26499913 |
[35] | Chiang CY, Bai KJ, Lin HH, et al. The influence of diabetes, glycemic control, and diabetes-related comorbidities on pulmonary tuberculosis. PLoS One, 2015, 10(3): e0121698. doi:10.1371/journal.pone.0121698. |
[36] |
Critchley JA, Carey IM, Harris T, et al. Glycemic Control and Risk of Infections Among People With Type 1 or Type 2 Diabetes in a Large Primary Care Cohort Study. Diabetes Care, 2018, 41(10): 2127-2135. doi:10.2337/dc18-0287.
pmid: 30104296 |
[37] |
Driscoll DM, Zhang Q. Expression and characterization of p27, the catalytic subunit of the apolipoprotein B mRNA editing enzyme. J Biol Chem, 1994, 269(31):19843-19847.
pmid: 8051066 |
[38] |
Ma J, Zhao F, Su W, et al. Zinc finger and interferon-stimulated genes play a vital role in TB-IRIS following HAART in AIDS. Per Med, 2018, 15(4): 251-269. doi:10.2217/pme-2017-0084.
pmid: 29984631 |
[39] | Liu H, Han Z, Chen L, et al. ZNFX1 promotes AMPK-mediated autophagy against Mycobacterium tuberculosis by stabilizing Prkaa2 mRNA. JCI Insight, 2024, 9(1): e171850. doi:10.1172/jci.insight.171850. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[11] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[12] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[13] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[14] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
[15] | Song Yunlin, Buzukela Abuduaini, Wang Guirong, Zhang Jiyuan, Lu Xiaobo. Research progresses on the role and mechanism of calcium-binding protein S100A12 and neutrophil extracellular trap formation in lung injury of severe pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 513-519. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||