Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (4): 513-519.doi: 10.19982/j.issn.1000-6621.20240445
• Review Articles • Previous Articles Next Articles
Song Yunlin1, Buzukela Abuduaini1, Wang Guirong2, Zhang Jiyuan3, Lu Xiaobo4()
Received:
2024-10-08
Online:
2025-04-10
Published:
2025-04-02
Contact:
Lu Xiaobo, Email: Supported by:
CLC Number:
Song Yunlin, Buzukela Abuduaini, Wang Guirong, Zhang Jiyuan, Lu Xiaobo. Research progresses on the role and mechanism of calcium-binding protein S100A12 and neutrophil extracellular trap formation in lung injury of severe pulmonary tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2025, 47(4): 513-519. doi: 10.19982/j.issn.1000-6621.20240445
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240445
[1] | Slight SR, Khader SA. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev, 2013, 24(2): 105-113. doi:10.1016/j.cytogfr.2012.10.002. |
[2] |
Amaral EP, Lasunskaia EB, D’Império-Lima MR. Innate immunity in tuberculosis: how the sensing of mycobacteria and tissue damage modulates macrophage death. Microbes Infect, 2016, 18(1): 11-20. doi:10.1016/j.micinf.2015.09.005.
pmid: 26369715 |
[3] |
Dheda K, Mirzayev F, Cirillo DM, et al. Multidrug-resistant tuberculosis. Nat Rev Dis Primers, 2024, 10(1): 22. doi:10.1038/s41572-024-00504-2.
pmid: 38523140 |
[4] | Dias NJD, Silva MSD, Barbosa MS, et al. Severe acute respi-ratory syndrome coronavirus 2 seroprevalence among patients with pulmonary tuberculosis. Rev Assoc Med Bras (1992), 2023, 69(9): e20230661. doi:10.1590/1806-9282.20230661. |
[5] | Marusinec R, Clifton T, Chitnis AS, et al. Advanced pulmonary tuberculosis in Alameda County: Ten-year incidence and risk factors. J Clin Tuberc Other Mycobact Dis, 2024, 37: 100475. doi:10.1016/j.jctube.2024.100475. |
[6] |
Muthu V, Agarwal R, Dhooria S, et al. Outcome of Critically Ill Subjects With Tuberculosis: Systematic Review and Meta-Analysis. Respir Care, 2018, 63(12): 1541-1554. doi:10.4187/respcare.06190.
pmid: 30206126 |
[7] | Hagan G, Nathani N. Clinical review: tuberculosis on the intensive care unit. Crit Care, 2013, 17(5): 240. doi:10.1186/cc12760. |
[8] | 吴绣岑, 陈贵华. 2023年美国预防医学服务工作组《成人结核分枝杆菌潜伏感染筛查》解读. 结核与肺部疾病杂志, 2024, 5 (5): 398-403. doi:10.19983/j.issn.2096-8493.2024105. |
[9] | Tan DTM, See KC. Diagnosis and management of severe pulmonary and extrapulmonary tuberculosis in critically ill patients: A mini review for clinicians. World J Crit Care Med, 2024, 13(2): 91435. doi:10.5492/wjccm.v13.i2.91435. |
[10] | Sia JK, Rengarajan J. Immunology of Mycobacterium tuberculosis Infections. Microbiol Spectr, 2019, 7(4): 10.1128/microbiolspec.gpp3-0022-2018. doi:10.1128/microbiolspec.GPP3-0022-2018. |
[11] |
Stutz MD, Allison CC, Ojaimi S, et al. Macrophage and neutrophil death programs differentially confer resistance to tuberculosis. Immunity, 2021, 54(8): 1758-1771.e7. doi:10.1016/j.immuni.2021.06.009.
pmid: 34256013 |
[12] | Eum SY, Kong JH, Hong MS, et al. Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 2010, 137(1): 122-128. doi:10.1378/chest.09-0903. |
[13] | Sugawara I, Udagawa T, Yamada H. Rat neutrophils prevent the development of tuberculosis. Infect Immun, 2004, 72(3): 1804-1806. doi:10.1128/IAI.72.3.1804-1806.2004. |
[14] |
Gatti A, Ceriani C, De Paschale M, et al. Quantification of neutrophil and monocyte CD 64 expression: a predictive biomarker for active tuberculosis. Int J Tuberc Lung Dis, 2020, 24(2): 196-201. doi:10.5588/ijtld.19.0147.
pmid: 32127104 |
[15] |
Miyahara R, Piyaworawong S, Naranbhai V, et al. Predicting the risk of pulmonary tuberculosis based on the neutrophil-to-lymphocyte ratio at TB screening in HIV-infected individuals. BMC Infect Dis, 2019, 19(1): 667. doi:10.1186/s12879-019-4292-9.
pmid: 31357936 |
[16] | Scott NR, Swanson RV, Al-Hammadi N, et al. S100A8/A 9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. J Clin Invest, 2020, 130(6): 3098-3112. doi:10.1172/JCI130546. |
[17] |
Lowe DM, Bandara AK, Packe GE, et al. Neutrophilia independently predicts death in tuberculosis. Eur Respir J, 2013, 42(6): 1752-1757. doi:10.1183/09031936.00140913.
pmid: 24114967 |
[18] |
Abakay O, Abakay A, Sen HS, et al. The relationship between inflammatory marker levels and pulmonary tuberculosis severity. Inflammation, 2015, 38(2): 691-696. doi:10.1007/s10753-014-9978-y.
pmid: 25028104 |
[19] |
Yin Y, Kuai S, Liu J, et al. Pretreatment neutrophil-to-lymphocyte ratio in peripheral blood was associated with pulmonary tuberculosis retreatment. Arch Med Sci, 2017, 13(2): 404-411. doi:10.5114/aoms.2016.60822.
pmid: 28261295 |
[20] | Panteleev AV, Nikitina IY, Burmistrova IA, et al. Severe Tuberculosis in Humans Correlates Best with Neutrophil Abundance and Lymphocyte Deficiency and Does Not Correlate with Antigen-Specific CD 4 T-Cell Response. Front Immunol, 2017, 8: 963. doi:10.3389/fimmu.2017.00963. |
[21] |
Seiler P, Aichele P, Bandermann S, et al. Early granuloma formation after aerosol Mycobacterium tuberculosis infection is regulated by neutrophils via CXCR3-signaling chemokines. Eur J Immunol, 2003, 33(10): 2676-2686. doi:10.1002/eji.200323956.
pmid: 14515251 |
[22] |
Tan BH, Meinken C, Bastian M, et al. Macrophages acquire neutrophil granules for antimicrobial activity against intracellular pathogens. J Immunol, 2006, 177(3): 1864-1871. doi:10.4049/jimmunol.177.3.1864.
pmid: 16849498 |
[23] | Eruslanov EB, Lyadova IV, Kondratieva TK, et al. Neutrophil responses to Mycobacterium tuberculosis infection in genetically susceptible and resistant mice. Infect Immun, 2005, 73(3): 1744-1753. doi:10.1128/IAI.73.3.1744-1753.2005. |
[24] | Yeremeev V, Linge I, Kondratieva T, et al. Neutrophils exacerbate tuberculosis infection in genetically susceptible mice. Tuberculosis (Edinb), 2015, 95(4): 447-451. doi:10.1016/j.tube.2015.03.007. |
[25] | Ashenafi S, Loreti MG, Bekele A, et al. Inflammatory immune profiles associated with disease severity in pulmonary tuberculosis patients with moderate to severe clinical TB or anemia. Front Immunol, 2023, 14: 1296501. doi:10.3389/fimmu.2023.1296501. |
[26] | Masood KI, Rottenberg ME, Carow B, et al. SOCS1 gene expression is increased in severe pulmonary tuberculosis. Scand J Immunol, 2012, 76(4): 398-404. doi:10.1111/j.1365-3083.2012.02731.x. |
[27] | Vincent FB, Saulep-Easton D, Figgett WA, et al. The BAFF/APRIL system: emerging functions beyond B cell biology and autoimmunity. Cytokine Growth Factor Rev, 2013, 24(3): 203-215. doi:10.1016/j.cytogfr.2013.04.003. |
[28] |
Sakai J, Akkoyunlu M. The Role of BAFF System Molecules in Host Response to Pathogens. Clin Microbiol Rev, 2017, 30(4): 991-1014. doi:10.1128/CMR.00046-17.
pmid: 28855265 |
[29] | Parsa R, Lund H, Georgoudaki AM, et al. BAFF-secreting neutrophils drive plasma cell responses during emergency granulopoiesis. J Exp Med, 2016, 213(8): 1537-1553. doi:10.1084/jem.20150577. |
[30] | García-Bengoa M, Meurer M, Stehr M, et al. Mycobacterium tuberculosis PE/PPE proteins enhance the production of reactive oxygen species and formation of neutrophil extracellular traps. Front Immunol, 2023, 14: 1206529. doi:10.3389/fimmu.2023.1206529. |
[31] | de Buhr N, von Köckritz-Blickwede M. How Neutrophil Extracellular Traps Become Visible. J Immunol Res, 2016, 2016: 4604713. doi:10.1155/2016/4604713. |
[32] |
Brinkmann V, Zychlinsky A. Neutrophil extracellular traps: is immunity the second function of chromatin?. J Cell Biol, 2012, 198(5): 773-783. doi:10.1083/jcb.201203170.
pmid: 22945932 |
[33] |
Jiménez-Alcázar M, Rangaswamy C, Panda R, et al. Host DNases prevent vascular occlusion by neutrophil extracellular traps. Science, 2017, 358(6367):1202-1206. doi:10.1126/science.aam8897.
pmid: 29191910 |
[34] | 吴守媛, 兰慧, 刘云兰, 等. 重症肺结核定义的概况性评价. 中华结核和呼吸杂志, 2023, 46(8): 760-773. doi:10.3760/cma.j.cn112147-20230517-00247. |
[35] | Urban CF, Ermert D, Schmid M, et al. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog, 2009, 5(10): e1000639. doi:10.1371/journal.ppat.1000639. |
[36] | Keller D, Mester P, Räth U, et al. Calprotectin, a Promising Serological Biomarker for the Early Diagnosis of Superinfections with Multidrug-Resistant Bacteria in Patients with COVID-19. Int J Mol Sci, 2024, 25(17): 9294. doi:10.3390/ijms25179294. |
[37] |
Moreira-Teixeira L, Stimpson PJ, Stavropoulos E, et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat Commun, 2020, 11(1): 5566. doi:10.1038/s41467-020-19412-6.
pmid: 33149141 |
[38] |
Branzk N, Lubojemska A, Hardison SE, et al. Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol, 2014, 15(11): 1017-1025. doi:10.1038/ni.2987.
pmid: 25217981 |
[39] | van der Meer AJ, Zeerleder S, Blok DC, et al. Neutrophil extracellular traps in patients with pulmonary tuberculosis. Respir Res, 2017, 18(1): 181. doi:10.1186/s12931-017-0663-1. |
[40] |
Braian C, Hogea V, Stendahl O. Mycobacterium tuberculosis-induced neutrophil extracellular traps activate human macrophages. J Innate Immun, 2013, 5(6): 591-602. doi:10.1159/000348676.
pmid: 23635526 |
[41] | Cavalcante-Silva LHA, Almeida FS, Andrade AG, et al. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci, 2023, 24(14): 11385. doi:10.3390/ijms241411385. |
[42] | Filio-Rodríguez G, Estrada-García I, Arce-Paredes P, et al. In vivo induction of neutrophil extracellular traps by Mycobacterium tuberculosis in a guinea pig model. Innate Immun, 2017, 23(7): 625-637. doi:10.1177/1753425917732406. |
[43] | Gopal R, Monin L, Torres D, et al. S100A8/A 9 proteins mediate neutrophilic inflammation and lung pathology during tuberculosis. Am J Respir Crit Care Med, 2013, 188(9): 1137-1146. doi:10.1164/rccm.201304-0803OC. |
[44] | Schechter MC, Buac K, Adekambi T, et al. Neutrophil extracellular trap (NET) levels in human plasma are associated with active TB. PLoS One, 2017, 12(8): e0182587. doi:10.1371/journal.pone.0182587. |
[45] | Sattar Z, Lora A, Jundi B, et al. The S 100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med, 2021, 2021: 5488591. doi:10.1155/2021/5488591. |
[46] | Motomura K, Romero R, Plazyo O, et al. The alarmin S100A 12 causes sterile inflammation of the human chorioamniotic membranes as well as preterm birth and neonatal mortality in mice. Biol Reprod, 2021, 105(6): 1494-1509. doi:10.1093/biolre/ioab188. |
[47] | Carvalho A, Lu J, Francis JD, et al. S100A 12 in Digestive Diseases and Health: A Scoping Review. Gastroenterol Res Pract, 2020, 2020: 2868373. doi:10.1155/2020/2868373. |
[48] |
Holzinger D, Foell D, Kessel C. The role of S100 proteins in the pathogenesis and monitoring of autoinflammatory diseases. Mol Cell Pediatr, 2018, 5(1): 7. doi:10.1186/s40348-018-0085-2.
pmid: 30255357 |
[49] | Jackson E, Little S, Franklin DS, et al. Expression, Purification, and Antimicrobial Activity of S100A12. J Vis Exp, 2017(123): 55557. doi:10.3791/55557. |
[50] | Kovacˇić M, Mitrović-Ajtić O, Beleslin-Cˇokić B, et al. TLR4 and RAGE conversely mediate pro-inflammatory S100A8/9-mediated inhibition of proliferation-linked signaling in myeloproliferative neoplasms. Cell Oncol (Dordr), 2018, 41(5): 541-553. doi:10.1007/s13402-018-0392-6. |
[51] |
Zackular JP, Chazin WJ, Skaar EP. Nutritional Immunity: S100 Proteins at the Host-Pathogen Interface. J Biol Chem, 2015, 290(31): 18991-18998. doi:10.1074/jbc.R115.645085.
pmid: 26055713 |
[52] | Fernandez IZ, Baxter RM, Garcia-Perez JE, et al. A novel human IL2RB mutation results in T and NK cell-driven immune dysregulation. J Exp Med, 2019, 216(6): 1255-1267. doi:10.1084/jem.20182015. |
[53] |
Sorci G, Riuzzi F, Giambanco I, et al. RAGE in tissue homeostasis, repair and regeneration. Biochim Biophys Acta, 2013, 1833(1): 101-109. doi:10.1016/j.bbamcr.2012.10.021.
pmid: 23103427 |
[54] |
Goyette J, Yan WX, Yamen E, et al. Pleiotropic roles of S100A 12 in coronary atherosclerotic plaque formation and rupture. J Immunol, 2009, 183(1): 593-603. doi:10.4049/jimmunol.0900373.
pmid: 19542470 |
[55] |
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol, 2022, 20(11): 657-670. doi:10.1038/s41579-022-00745-6.
pmid: 35641670 |
[56] |
Berrocal-Almanza LC, Goyal S, Hussain A, et al. S100A 12 is up-regulated in pulmonary tuberculosis and predicts the extent of alveolar infiltration on chest radiography: an observational study. Sci Rep, 2016, 6: 31798. doi:10.1038/srep31798.
pmid: 27539060 |
[57] |
Bagheri V. S100A12: Friend or foe in pulmonary tuberculosis?. Cytokine, 2017, 92: 80-82. doi:10.1016/j.cyto.2017.01.009.
pmid: 28110121 |
[58] | Realegeno S, Kelly-Scumpia KM, Dang AT, et al. S100A 12 Is Part of the Antimicrobial Network against Mycobacterium leprae in Human Macrophages. PLoS Pathog, 2016, 12(6): e1005705. doi:10.1371/journal.ppat.1005705. |
[59] |
Kumar NP, Moideen K, Nancy A, et al. Systemic RAGE ligands are upregulated in tuberculosis individuals with diabetes co-morbidity and modulated by anti-tuberculosis treatment and metformin therapy. BMC Infect Dis, 2019, 19(1): 1039. doi:10.1186/s12879-019-4648-1.
pmid: 31818258 |
[60] |
Wang Y, Sun Q, Zhang Y, et al. Systemic immune dysregulation in severe tuberculosis patients revealed by a single-cell transcriptome atlas. J Infect, 2023, 86(5): 421-438. doi:10.1016/j.jinf.2023.03.020.
pmid: 37003521 |
[61] | Zuo Y, Leng G, Leng P. Identification and validation of molecular subtype and prognostic signature for lung adenocarcinoma based on neutrophil extracellular traps. Pathol Oncol Res, 2023, 29: 1610899. doi:10.3389/pore.2023.1610899. |
[62] | Zhang X, Zhang XL, Zhang Y, et al. Abstract 10505: S100a12 Aggravates Acute Myocardial Infarction Injury Through Excessive Neutrophil Extracellular Trap Formation. Circulation, 2021, 144(Supppl_1): A10505. doi:10.1161/circ.144.suppl 1.10505. |
[1] | XU Shu-ming,CHENG Lin-xian,YANG Xuan-qin,XIN Lei,FAN Shang-fei. Analysis of 33 cases of atypical pulmonary tuberculosis ball by CT images [J]. Chinese Journal of Antituberculosis, 2013, 35(11): 930-933. |
[2] | HUANG Mai-ling,WU Xiao-guang,MA Li-ping,GAO Meng-qiu,CHEN Hong-mei,LIU Rong-mei,XIE Li,ZHANG Li-qun. Clinical analysis on 33 elder patients with acute hematogenous disseminated pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2013, 35(11): 927-929. |
[3] | CHEN Qiu-lan,ZHOU Lin,WANG Ni,HU Dai-yu,LI Fang,CHEN Ming-ting. Exploration and effect evaluation of the intervention of providing transportation subsidies to pulmonary tuberculosis patients in two counties in China [J]. Chinese Journal of Antituberculosis, 2012, 34(10): 642-646. |
[4] | YANG Hua-lin, BAO Chang-lin, BAI Li-qiong, LI Yan-hong, GONG De-hua, TANG Yi, WAN Yan-ping, XIAO Tao, FAN Jiang-jing, CHEN You-fang. Comparison between the effects of interventions of telephone supervision and traditional supervision to the pulmonary TB patients in Hunan rural areas [J]. Chinese Journal of Antituberculosis, 2011, 33(10): 646-650. |
[5] | Cao Wenli,Chen Zheng,Xu Qingjie,Han Yuefei,Wu Yin,Wang Jinling,Xiang Xi,Tu Dehua . Clinical analysis on sputum smear positive conversion in patients with pulmonary tuberculosis during regular treatment [J]. Chinese Journal of Antituberculosis, 2010, 32(9): 92-95. |
[6] | Li Fengjuan,Yan Xiaoting,Nan Qin,Wang Xinhong. Investigation and analysis of the phenomenon of cultural shock of hospital new tuberculosis patients and nursing strategy [J]. Chinese Journal of Antituberculosis, 2010, 32(1): 30-34. |
[7] | Li Hong,Tangshenjie.. A clinical trial of Mycobaeterium Vaccae vaccine combining chemotherapy in treating new pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2006, 28(4): 241-243. |
[8] | Jin Kequn.. Clinical analysis of 129 cases suffer from AIDS with pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2005, 27(1): 51-53. |
[9] | Guo Xingquan,Zhou Xinhua,He Wei.. HRCT manifestation of military pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2005, 27(1): 44-46. |
[10] | Huang Xuerui,Gao Weiwei,Bu Jianling,et al.. Analysis of therapeutic effect on the individualized regimens for 69 patients with multi-drug resistant pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2004, 26(5): 257-260. |
[11] | ZHANG Ming,YE Nian-cheng.. Analysis on the effect of the tuberculosis control project in Feshan City(1992-2001) [J]. Chinese Journal of Antituberculosis, 2003, 25(3): 188-192. |
[12] | ZHU Xing-ming,HUANG Xiang-shui,WU Guang-wei,el al.. The effect analysis of tuberculosis control project of health V in Maoming city [J]. Chinese Journal of Antituberculosis, 2003, 25(3): 181-183. |
[13] | CHEN Qing-hua1,ZHANG Jin-liang,LI Yan-xiang.. The SCL-90 mental state investigate and intervene in the sailors with tuberculosis [J]. Chinese Journal of Antituberculosis, 2003, 25(3): 153-155. |
[14] | LU Xi wei, ZHANG Hong juan, SHEN Jie, et al.. The situation and effectiveness of pulmonary tuberculosis convergence case-management in Dalian [J]. Chinese Journal of Antituberculosis, 2001, 23(2): 103-105. |
[15] | LIU Jin lan,XIONG Chang fu,WANG Xiao jing,et al.. Analysis on effects of TB control project loaned by World Bank in Hubei (1992~1998) [J]. Chinese Journal of Antituberculosis, 2001, 23(2): 91-94. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||