Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (6): 713-721.doi: 10.19982/j.issn.1000-6621.20240046
• Review Articles • Previous Articles Next Articles
Xu Wenhui1, Zhang Yanqiu2, Shi Jie2, Sun Dingyong1,2()
Received:
2024-02-01
Online:
2024-06-10
Published:
2024-06-03
Contact:
Sun Dingyong, Email: Supported by:
CLC Number:
Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis[J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. doi: 10.19982/j.issn.1000-6621.20240046
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240046
第一作者及 文献序号 | 样本来源 | 技术方法 | 生物标志物 | 敏感度 (%) | 特异度 (%) | 样本量 (例) |
---|---|---|---|---|---|---|
Liang[ | 血液 | CLIA | 单核细胞趋化因子-1(MCP-1) | 90.3 | 97 | 267 |
Li[ | 血液 | Luminex | CC趋化因子配体8(CCL 8)联合CXCL 9 | 96.05 | 84.37 | 208 |
CCL 8 | 90.79 | 100 | ||||
Jacobs[ | 血液 | Luminex | 神经细胞黏附因子(NCAM)、血清淀粉样P物质(SAP)、白细胞介素1β(IL-1β)、人可溶性CD40配体(sCD40L)、IL-13和载脂蛋白A-Ⅰ(APO A-Ⅰ) | 100 | 89.3 | 55 |
Jiang[ | 血液 | ELISA | 血清淀粉样蛋白A1(SAA1)、蛋白Z(ProZ)、C4结合蛋白β(C4BPβ) | 97.06 | 95.45 | 418 |
Xu[ | 血液 | ELISA | S100钙结合蛋白A9(S100A9)、超氧化物歧化酶(SOD3)、基质金属蛋白酶9(MMP9) | 90 | 87.5 | 160 |
Chegou[ | 血液 | Luminex | C-反应蛋白(CRP)、循环甲状腺素运载蛋白(TTR)、γ干扰素(IFN-γ)、补体因子H、APO A-Ⅰ、IP-10、SAA | 93.8 | 73.3 | 716 |
Mann[ | 血液 | Luminex | CRP、NCAM、铁蛋白、CXCL8、生长分化因子(GDF-1)(STB vs. 非结核性腰痛) | 100 | 100 | 43 |
Kathamuthu[ | 血液 | Luminex | 基质金属蛋白酶(MMP) | |||
MMP-1(TB vs. EPTB、TB vs. LTBI、 TB vs. HC) | 95.59/98.53/100 | 84.09/100/100 | 200 | |||
MMP-13(EPTB vs. LTBI、EPTB vs. HC) | 100/100 | 100/100 | ||||
组织金属蛋白酶抑制剂(TIMP) | ||||||
TIMP-2(TB vs. EPTB、TB vs. LTBI、 TB vs. HC) | 95.59/100/100 | 95.45/95.45/97.73 | ||||
TIMP-3(EPTB vs. HC) | 97.73 | 95.45 | ||||
TIMP-4(TB vs. EPTB、TB vs. LTBI、 TB vs. HC) | 100/98.53/100 | 100/95.45/97.73 | ||||
Lawn[ | 尿液 | ELISA | 脂阿拉伯甘露糖(LAM) | 66.7 | 98 | 602 |
Jacobs[ | 唾液 | Luminex | 颗粒酶A、生长分化因子15(GDF-15)、SAA、IL-21、CXCL5、IL-12(p40)、IL-13、纤溶酶原激活物抑制剂1(PAI-1) | 93 | 100 | 51 |
细胞外基质蛋白1(ECM 1)、肌球蛋白、HCC 1、IL-21、CXCL5、组织型纤溶酶原激活剂(TPA)、IL-12(p40)、IL-13 | 100 | 95 | ||||
Mutavhatsindi[ | 唾液 | MS | α-1-抗胰凝乳蛋白酶(P01011)、NAD(P)H-水合物差向异构酶(Q8NCW5)、蛋白酶体亚单位β6型(P28072)、免疫球蛋白κ变异体1-33(A0A2Q2TTZ9)、神经丝氨酸(Q99574) | 100 | 90.9 | 22 |
Vishinkin[ | 呼出性气体 | GC-MS | 挥发性有机化合物(VOC) | 90.3 | 80.3 | 916 |
Luo[ | 胸腔积液 | MS | 苯丙氨酸、亮氨酸、磷脂酰胆碱和鞘磷脂 | 97 | 93 | 80 |
Sutherland[ | 胸腔积液 | BioPlex | γ-干扰素诱导蛋白-10(IP-10)、IL-10、IL-6(TB vs.MPE) | 92 | 91 | 41 |
Huang[ | 脑脊液 | ELISA | APO A-I、载脂蛋白E(APOE)、S100 钙结合蛋白 A8(S100A8) | 95 | 77.5 | 80 |
[1] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[2] |
Denkinger CM, Nicolau I, Ramsay A, et al. Are peripheral microscopy centres ready for next generation molecular tuberculosis diagnostics?. Eur Respir J, 2013, 42(2): 544-547. doi:10.1183/09031936.00081113.
pmid: 23904551 |
[3] | Dorman SE. New diagnostic tests for tuberculosis: bench, bedside, and beyond. Clin Infect Dis, 2010, 50 Suppl 3: S173-S177. doi:10.1086/651488. |
[4] | Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med, 2010, 363(11): 1005-1015. doi:10.1056/NEJMoa0907847. |
[5] |
MacLean E, Broger T, Yerlikaya S, et al. A systematic review of biomarkers to detect active tuberculosis. Nat Microbiol, 2019, 4(5): 748-758. doi:10.1038/s41564-019-0380-2.
pmid: 30804546 |
[6] |
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 2001, 69(3): 89-95. doi:10.1067/mcp.2001.113989.
pmid: 11240971 |
[7] |
Kik SV, Denkinger CM, Casenghi M, et al. Tuberculosis diagnostics: which target product profiles should be prioritised?. Eur Respir J, 2014, 44(2): 537-540. doi:10.1183/09031936.00027714.
pmid: 24696110 |
[8] | World Health Organization. High priority target product profiles for new tuberculosis diagnostics:report of a consensus meeting. Geneva: World Health Organization, 2014. |
[9] |
Turner MD, Nedjai B, Hurst T, et al. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta, 2014, 1843(11): 2563-2582. doi:10.1016/j.bbamcr.2014.05.014.
pmid: 24892271 |
[10] | 何硕, 陈贵海. 抑郁共病失眠患者抗炎性细胞因子水平与认知功能相关性的初步研究. 合肥: 安徽医科大学, 2022. |
[11] | Walzl G, Haks MC, Joosten SA, et al. Clinical immunology and multiplex biomarkers of human tuberculosis. Cold Spring Harb Perspect Med, 2014, 5(4): a018515. doi:10.1101/cshperspect.a018515. |
[12] |
Peresi E, Silva SM, Calvi SA, et al. Cytokines and acute phase serum proteins as markers of inflammatory regression during the treatment of pulmonary tuberculosis. J bras pneumol, 2008, 34(11): 942-949. doi:10.1590/s1806-37132008001100009.
pmid: 19099101 |
[13] | 聂文娟, 石文卉, 刘佩英, 等. 血清细胞因子TNF-α、IL-4、sIL-2R和IFN-γ对预测抗结核治疗效果的价值. 中国防痨杂志, 2022, 44(10): 1022-1027. doi:10.19982/j.issn.1000-6621.20220167. |
[14] | Dhillon NK, Peng F, Ransohoff RM, et al. PDGF synergistically enhances IFN-gamma-induced expression of CXCL 10 in blood-derived macrophages: implications for HIV dementia. J Immunol, 2007, 179(5): 2722-2730. doi:10.4049/jimmunol.179.5.2722. |
[15] | Kabeer BS, Raja A, Raman B, et al. IP-10 response to RD 1 antigens might be a useful biomarker for monitoring tuberculosis therapy. BMC Infect Dis, 2011, 11: 135. doi:10.1186/1471-2334-11-135. |
[16] |
Wergeland I, Pullar N, Assmus J, et al. IP-10 differentiates between active and latent tuberculosis irrespective of HIV status and declines during therapy. J Infect, 2015, 70(4): 381-391. doi:10.1016/j.jinf.2014.12.019.
pmid: 25597826 |
[17] |
Ruhwald M, Aabye MG, Ravn P. IP-10 release assays in the diagnosis of tuberculosis infection: current status and future directions. Expert Rev Mol Diagn, 2012, 12(2): 175-187. doi:10.1586/erm.11.97.
pmid: 22369377 |
[18] |
Aabye MG, Ruhwald M, Praygod G, et al. Potential of interferon-γ-inducible protein 10 in improving tuberculosis diagnosis in HIV-infected patients. Eur Respir J, 2010, 36(6): 1488-1490. doi:10.1183/09031936.00039010.
pmid: 21119209 |
[19] |
Qiu X, Xiong T, Su X, et al. Accumulate evidence for IP-10 in diagnosing pulmonary tuberculosis. BMC Infect Dis, 2019, 19(1): 924. doi:10.1186/s12879-019-4466-5.
pmid: 31666025 |
[20] | 宋瑞雪, 魏荣荣, 董静, 等. γ-干扰素诱导蛋白-10 mRNA检测技术对结核病辅助诊断的价值. 中国防痨杂志, 2023, 45(5): 221-227. doi:10.19982/j.issn.1000-6621.20220518. |
[21] | Petrone L, Cannas A, Aloi F, et al. Blood or Urine IP-10 Cannot Discriminate between Active Tuberculosis and Respiratory Diseases Different from Tuberculosis in Children. Biomed Res Int, 2015, 2015: 589471. doi:10.1155/2015/589471. |
[22] |
Qiu X, Wang H, Tang Y, et al. Is interleukin-2 an optimal marker for diagnosing tuberculosis infection? A systematic review and meta-analysis. Ann Med, 2020, 52(7): 376-385. doi:10.1080/07853890.2020.1800073.
pmid: 32700645 |
[23] | 贾红彦, 董静, 张宗德, 等. 结核分枝杆菌感染的免疫学检测技术研究进展及临床应用现状. 中国防痨杂志, 2022, 44(7): 720-726. doi:10.19982/j.issn.1000-6621.20220103. |
[24] |
Liang Y, Wang Y, Li H, et al. Evaluation of a whole-blood chemiluminescent immunoassay of IFN-γ, IP-10, and MCP-1 for diagnosis of active pulmonary tuberculosis and tuberculous pleurisy patients. APMIS, 2016, 124(10): 856-864. doi:10.1111/apm.12583.
pmid: 27523388 |
[25] | Frahm M, Goswami ND, Owzar K, et al. Discriminating between latent and active tuberculosis with multiple biomarker responses. Tuberculosis (Edinb), 2011, 91(3): 250-256. doi:10.1016/j.tube.2011.02.006. |
[26] | Yamada G, Shijubo N, Shigehara K, et al. Increased levels of circulating interleukin-18 in patients with advanced tuberculosis. Am J Respir Crit Care Med, 2000, 161(6): 1786-1789. doi:10.1164/ajrccm.161.6.9911054. |
[27] |
Vankayalapati R, Wizel B, Weis SE, et al. Production of interleukin-18 in human tuberculosis. J Infect Dis, 2000, 182(1): 234-239. doi:10.1086/315656.
pmid: 10882602 |
[28] | Vivekanandan MM, Adankwah E, Aniagyei W, et al. Plasma cytokine levels characterize disease pathogenesis and treatment response in tuberculosis patients. Infection, 2023, 51(1): 169-179. doi:10.1007/s15010-022-01870-3. |
[29] | Maenetje P, Baik Y, Schramm DB, et al. Circulating Biomarkers, Fraction of Exhaled Nitric Oxide, and Lung Function in Patients With Human Immunodeficiency Virus and Tuberculosis. J Infect Dis, 2024, 229(3):824-832. doi:10.1093/infdis/jiad232. |
[30] |
Anbarasu D, Raja CP, Raja A. Multiplex analysis of cytokines/chemokines as biomarkers that differentiate healthy contacts from tuberculosis patients in high endemic settings. Cytokine, 2013, 61(3): 747-754. doi:10.1016/j.cyto.2012.12.031.
pmid: 23395386 |
[31] |
Li H, Ren W, Liang Q, et al. A novel chemokine biomarker to distinguish active tuberculosis from latent tuberculosis: a cohort study. QJM, 2023, 116(12): 1002-1009. doi:10.1093/qjmed/hcad214.
pmid: 37740371 |
[32] | Akashi S, Suzukawa M, Takeda K, et al. IL-1RA in the supernatant of QuantiFERON-TB Gold In-Tube and Quanti-FERON-TB Gold Plus is useful for discriminating active tuberculosis from latent infection. J Infect Chemother, 2021, 27(4): 617-624. doi:10.1016/j.jiac.2020.11.023. |
[33] |
Zhang H, Cao X, Xin H, et al. Serum level of IL-1ra was associated with the treatment of latent tuberculosis infection in a Chinese population. BMC Infect Dis, 2020, 20(1): 330. doi:10.1186/s12879-020-05047-x.
pmid: 32384874 |
[34] |
Jacobs R, Malherbe S, Loxton AG, et al. Identification of novel host biomarkers in plasma as candidates for the immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment response. Oncotarget, 2016, 7(36): 57581-57592. doi:10.18632/oncotarget.11420.
pmid: 27557501 |
[35] | Jiang TT, Shi LY, Wei LL, et al. Serum amyloid A, protein Z, and C4b-binding protein β chain as new potential biomarkers for pulmonary tuberculosis. PLoS One, 2017, 12(3): e0173304. doi:10.1371/journal.pone.0173304. |
[36] | Xu D, Li Y, Li X, et al. Serum protein S100A9, SOD3, and MMP 9 as new diagnostic biomarkers for pulmonary tuberculosis by iTRAQ-coupled two-dimensional LC-MS/MS. Proteomics, 2015, 15(1): 58-67. doi:10.1002/pmic.201400366. |
[37] |
Chegou NN, Sutherland JS, Malherbe S, et al. Diagnostic performance of a seven-marker serum protein biosignature for the diagnosis of active TB disease in African primary healthcare clinic attendees with signs and symptoms suggestive of TB. Thorax, 2016, 71(9): 785-794. doi:10.1136/thoraxjnl-2015-207999.
pmid: 27146200 |
[38] |
Yoon C, Semitala FC, Atuhumuza E, et al. Point-of-care C-reactive protein-based tuberculosis screening for people living with HIV: a diagnostic accuracy study. Lancet Infect Dis, 2017, 17(12): 1285-1292. doi:10.1016/S1473-3099(17)30488-7.
pmid: 28847636 |
[39] |
Geluk A, Corstjens P. CRP: tell-tale biomarker or common denominator?. Lancet Infect Dis, 2017, 17(12): 1225-1227. doi:10.1016/S1473-3099(17)30472-3.
pmid: 28847637 |
[40] | Mann TN, Davis JH, Walzl G, et al. Candidate Biomarkers to Distinguish Spinal Tuberculosis From Mechanical Back Pain in a Tuberculosis Endemic Setting. Front Immunol, 2021, 12: 768040. doi:10.3389/fimmu.2021.768040. |
[41] |
Kathamuthu GR, Kumar NP, Moideen K, et al. Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases Are Potential Biomarkers of Pulmonary and Extra-Pulmonary Tuberculosis. Front Immunol, 2020, 11: 419. doi:10.3389/fimmu.2020.00419.
pmid: 32218787 |
[42] | 中国防痨协会, 中国防痨协会学校与儿童结核病防治专业分会, 《中国防痨杂志》编辑委员会. 重组结核杆菌融合蛋白(EC)临床应用专家共识. 中国防痨杂志, 2020, 42(8): 761-768. doi:10.3969/j.issn.1000-6621.2020.08.001. |
[43] | Meier NR, Jacobsen M, Ottenhoff THM, et al. A Systematic Review on Novel Mycobacterium tuberculosis Antigens and Their Discriminatory Potential for the Diagnosis of Latent and Active Tuberculosis. Front Immunol, 2018, 9: 2476. doi:10.3389/fimmu.2018.02476. |
[44] |
Lawn SD, Kerkhoff AD, Vogt M, et al. Diagnostic accuracy of a low-cost, urine antigen, point-of-care screening assay for HIV-associated pulmonary tuberculosis before antiretroviral therapy: a descriptive study. Lancet Infect Dis, 2012, 12(3): 201-209. doi:10.1016/S1473-3099(11)70251-1.
pmid: 22015305 |
[45] |
Young BL, Mlamla Z, Gqamana PP, et al. The identification of tuberculosis biomarkers in human urine samples. Eur Respir J, 2014, 43(6): 1719-1729. doi:10.1183/09031936.00175113.
pmid: 24743962 |
[46] | Seth M, Lamont EA, Janagama HK, et al. Biomarker discovery in subclinical mycobacterial infections of cattle. PLoS One, 2009, 4(5): e5478. doi:10.1371/journal.pone.0005478. |
[47] |
Tanaka T, Sakurada S, Kano K, et al. Identification of tuberculosis-associated proteins in whole blood supernatant. BMC Infect Dis, 2011, 11: 71. doi:10.1186/1471-2334-11-71.
pmid: 21418657 |
[48] | Wang J, Zhu X, Xiong X, et al. Identification of potential urine proteins and microRNA biomarkers for the diagnosis of pulmonary tuberculosis patients. Emerg Microbes Infect, 2018, 7(1): 63. doi:10.1038/s41426-018-0066-5. |
[49] |
Eribo OA, Leqheka MS, Malherbe ST, et al. Host urine immunological biomarkers as potential candidates for the diagnosis of tuberculosis. Int J Infect Dis, 2020, 99: 473-481. doi:10.1016/j.ijid.2020.08.019.
pmid: 32800854 |
[50] |
Liu L, Deng J, Yang Q, et al. Urinary proteomic analysis to identify a potential protein biomarker panel for the diagnosis of tuberculosis. IUBMB Life, 2021, 73(8): 1073-1083. doi:10.1002/iub.2509.
pmid: 34048129 |
[51] | Kaushik A, Bandyopadhyay S, Porwal C, et al. 2D-DIGE based urinary proteomics and functional enrichment studies to reveal novel Mycobacterium tuberculosis and human protein biomarker candidates for pulmonary tuberculosis. Biochem Biophys Res Commun, 2022, 619: 15-21. doi:10.1016/j.bbrc.2022.06.021. |
[52] |
Petrone L, Cannas A, Vanini V, et al. Blood and urine inducible protein 10 as potential markers of disease activity. Int J Tuberc Lung Dis, 2016, 20(11): 1554-1561. doi:10.5588/ijtld.16.0342.
pmid: 27776600 |
[53] | Russell TM, Green LS, Rice T, et al. Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications. J Clin Microbiol, 2017, 55(10): 3072-3088. doi:10.1128/JCM.00469-17. |
[54] | Kim J, Tran VT, Oh S, et al. Clinical Trial: Magnetoplasmonic ELISA for Urine-based Active Tuberculosis Detection and Anti-Tuberculosis Therapy Monitoring. ACS Cent Sci, 2021, 7(11): 1898-1907. doi:10.1021/acscentsci.1c00948. |
[55] | Phalane KG, Kriel M, Loxton AG, et al. Differential expression of host biomarkers in saliva and serum samples from individuals with suspected pulmonary tuberculosis. Mediators Inflamm, 2013, 2013: 981984. doi:10.1155/2013/981984. |
[56] | Jacobs R, Maasdorp E, Malherbe S, et al. Diagnostic Potential of Novel Salivary Host Biomarkers as Candidates for the Immunological Diagnosis of Tuberculosis Disease and Monitoring of Tuberculosis Treatment Response. PLoS One, 2016, 11(8): e0160546. doi:10.1371/journal.pone.0160546. |
[57] | Estévez O, Anibarro L, Garet E, et al. Identification of candidate host serum and saliva biomarkers for a better diagnosis of active and latent tuberculosis infection. PLoS One, 2020, 15(7): e0235859. doi:10.1371/journal.pone.0235859. |
[58] |
Jacobs R, Tshehla E, Malherbe S, et al. Host biomarkers detected in saliva show promise as markers for the diagnosis of pulmonary tuberculosis disease and monitoring of the response to tuberculosis treatment. Cytokine, 2016, 81: 50-56. doi:10.1016/j.cyto.2016.02.004.
pmid: 26878648 |
[59] |
Mateos J, Estévez O, González-Fernández Á, et al. High-resolution quantitative proteomics applied to the study of the specific protein signature in the sputum and saliva of active tuberculosis patients and their infected and uninfected contacts. J Proteomics, 2019, 195: 41-52. doi:10.1016/j.jprot.2019.01.010.
pmid: 30660769 |
[60] |
Namuganga AR, Chegou NN, Mubiri P, et al. Suitability of saliva for Tuberculosis diagnosis: comparing with serum. BMC Infect Dis, 2017, 17(1): 600. doi:10.1186/s12879-017-2687-z.
pmid: 28859607 |
[61] | Mutavhatsindi H, Calder B, McAnda S, et al. Identification of novel salivary candidate protein biomarkers for tuberculosis diagnosis: A preliminary biomarker discovery study. Tuberculosis (Edinb), 2021, 130: 102118. doi:10.1016/j.tube.2021.102118. |
[62] | Adewole OO, Erhabor GE, Adewole TO, et al. Proteomic profiling of eccrine sweat reveals its potential as a diagnostic biofluid for active tuberculosis. Proteomics Clin Appl, 2016, 10(5): 547-553. doi:10.1002/prca.201500071. |
[63] |
Wang CH, Liu CY, Lin HC, et al. Increased exhaled nitric oxide in active pulmonary tuberculosis due to inducible NO synthase upregulation in alveolar macrophages. Eur Respir J, 1998, 11(4): 809-815. doi:10.1183/09031936.98.11040809.
pmid: 9623681 |
[64] | Phillips M, Basa-Dalay V, Bothamley G, et al. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinb), 2010, 90(2): 145-151. doi:10.1016/j.tube.2010.01.003. |
[65] |
Nakhleh MK, Jeries R, Gharra Al, et al. Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors. Eur Respir J, 2014, 43(5): 1522-1525. doi:10.1183/09031936.00019114.
pmid: 24789953 |
[66] | Lim SH, Martino R, Anikst V, et al. Rapid Diagnosis of Tuberculosis from Analysis of Urine Volatile Organic Compounds. ACS Sens, 2016, 1(7):852-856. doi:10.1021/acssensors.6b00309. |
[67] |
Zetola NM, Modongo C, Matsiri O, et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J Infect, 2017, 74(4): 367-376. doi:10.1016/j.jinf.2016.12.006.
pmid: 28017825 |
[68] | Vishinkin R, Busool R, Mansour E, et al. Profiles of Volatile Biomarkers Detect Tuberculosis from Skin. Adv Sci, 2021, 8(15): 2100235. doi:10.1002/advs.202100235. |
[69] | Luo P, Mao K, Xu J, et al. Metabolic characteristics of large and small extracellular vesicles from pleural effusion reveal biomarker candidates for the diagnosis of tuberculosis and malignancy. J Extracell Vesicles, 2020, 9(1): 1790158. doi:10.1080/20013078.2020.1790158. |
[70] | Sutherland JS, Garba D, Fombah AE, et al. Highly accurate diagnosis of pleural tuberculosis by immunological analysis of the pleural effusion. PLoS One, 2012, 7(1): e30324. doi:10.1371/journal.pone.0030324. |
[71] | Huang M, Ding Z, Li W, et al. Identification of protein biomarkers in host cerebrospinal fluid for differential diagnosis of tuberculous meningitis and other meningitis. Front Neurol, 2022, 13: 886040. doi:10.3389/fneur.2022.886040. |
[72] | Manyelo CM, Solomons RS, Snyders CI, et al. Validation of host cerebrospinal fluid protein biomarkers for early diagnosis of tuberculous meningitis in children: a replication and new biosignature discovery study. Biomarkers, 2022, 27(6): 549-561. doi:10.1080/1354750X.2022.2071991. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||