Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (4): 449-460.doi: 10.19982/j.issn.1000-6621.20240005
• Original Articles • Previous Articles Next Articles
Shang Xuetian1, Dong Jing1, Huang Mailing2, Sun Qi1, Jia Hongyan1, Zhang Lanyue1, Liu Qiuyue3, Yao Mingxu1, Wang Yingchao1, Ji Xiuxiu1, Du Boping1, Xing Aiying1, Pan Liping1()
Received:
2024-01-03
Online:
2024-04-10
Published:
2024-04-01
Contact:
Pan Liping
E-mail:panliping2006@163.com
Supported by:
CLC Number:
Shang Xuetian, Dong Jing, Huang Mailing, Sun Qi, Jia Hongyan, Zhang Lanyue, Liu Qiuyue, Yao Mingxu, Wang Yingchao, Ji Xiuxiu, Du Boping, Xing Aiying, Pan Liping. Transcriptome study on peripheral blood mononuclear cells of latent tuberculosis infection individuals[J]. Chinese Journal of Antituberculosis, 2024, 46(4): 449-460. doi: 10.19982/j.issn.1000-6621.20240005
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240005
基因 | 功能 | 芯片数据 | qPCR验证 | ||||||
---|---|---|---|---|---|---|---|---|---|
差异倍数 | P值 | 表达趋势 | 差异倍数 | t值 | P值 | 表达趋势 | |||
CAMK1G | 调节钙离子/钙调蛋白依赖性蛋白激酶活性 | 12.50 | 0.003 | 上调 | 4.36 | 1.296 | 0.212 | 上调 | |
IL2 | Th1型细胞因子,参与免疫反应 | 5.79 | 0.005 | 上调 | 23.46 | 3.539 | 0.002 | 上调 | |
SPINK1 | 调节胞质钙离子浓度 | 5.37 | 0.007 | 上调 | 1.15 | 0.237 | 0.816 | 上调 | |
SUCNR1 | 参与G蛋白偶联受体信号通路 | 4.56 | 0.001 | 上调 | 1.46 | 0.634 | 0.530 | 上调 | |
HCAR3 | 参与G蛋白偶联受体信号通路 | 4.11 | <0.001 | 上调 | 8.76 | 2.678 | 0.015 | 上调 | |
IL18BP | 参与Th1型免疫反应 | 4.10 | 0.002 | 上调 | 4.52 | 3.902 | 0.001 | 上调 | |
CHI3L1 | 参与几丁质分解代谢 | 4.05 | <0.001 | 上调 | 1.87 | 2.338 | 0.031 | 上调 | |
TNF | 促炎细胞因子 | 3.65 | <0.001 | 上调 | 3.49 | 1.782 | 0.092 | 上调 | |
SASH1 | 参与蛋白质多泛素化 | 3.56 | 0.003 | 上调 | |||||
CD274 | 参与适应性免疫反应 | 3.52 | 0.001 | 上调 | |||||
ABCA7 | 参与脂质运输 | 0.49 | 0.008 | 下调 | |||||
C1orf186 | 参与红细胞生成 | 0.49 | 0.002 | 下调 | |||||
IKZF2 | 参与RNA聚合酶Ⅱ启动子转录调控 | 0.49 | 0.001 | 下调 | |||||
ACAP1 | 参与蛋白质运输 | 0.47 | 0.006 | 下调 | |||||
AQP3 | 正向调节免疫系统过程 | 0.46 | 0.003 | 下调 | |||||
LY9 | 参与细胞黏附 | 0.46 | 0.007 | 下调 | |||||
RGS14 | 参与G蛋白偶联受体信号通路 | 0.42 | 0.002 | 下调 | |||||
MYLIP | 参与泛素依赖的蛋白质分解代谢过程 | 0.40 | 0.001 | 下调 | |||||
RASGRP2 | 调节细胞生长 | 0.37 | 0.007 | 下调 | 0.44 | 3.279 | 0.004 | 下调 | |
TPM2 | 调节ATP酶活性 | 0.37 | 0.002 | 下调 | 0.40 | 1.867 | 0.078 | 下调 |
模块/聚类分析 | 条目 | 富集倍数 | P值 | 基因个数 |
---|---|---|---|---|
蓝色模块 | ||||
BP | ||||
炎症应答 | 2.46 | <0.001 | 48 | |
溶酶体腔酸化 | 10.14 | <0.001 | 10 | |
信号转导 | 1.67 | <0.001 | 98 | |
细胞因子介导的信号通路 | 3.21 | <0.001 | 23 | |
突触囊泡腔酸化 | 11.16 | <0.001 | 8 | |
液泡酸化 | 8.73 | <0.001 | 9 | |
肌动蛋白细胞骨架组织 | 2.68 | <0.001 | 28 | |
白细胞介素-1β产生的正调节 | 4.33 | <0.001 | 13 | |
MF | ||||
蛋白结合 | 1.12 | <0.001 | 664 | |
质子转运ATP酶活性,旋转机制 | 7.68 | <0.001 | 9 | |
相同蛋白结合 | 1.41 | <0.001 | 115 | |
PDZ结构域结合 | 3.36 | <0.001 | 14 | |
受体结合 | 1.81 | 0.001 | 35 | |
细胞因子受体活性 | 3.74 | 0.001 | 10 | |
锰离子跨膜转运体活性 | 12.20 | 0.003 | 4 | |
信号受体活性 | 2.01 | 0.003 | 22 | |
CC | ||||
质膜 | 1.46 | <0.001 | 347 | |
溶酶体膜 | 2.94 | <0.001 | 52 | |
细胞外外泌体 | 1.65 | <0.001 | 161 | |
内体膜 | 2.94 | <0.001 | 35 | |
细胞表面 | 2.09 | <0.001 | 60 | |
溶酶体 | 2.62 | <0.001 | 36 | |
胞液 | 1.27 | <0.001 | 312 | |
高尔基体 | 1.74 | <0.001 | 87 | |
蓝绿色模块 | ||||
BP | ||||
转录正调控,DNA模板 | 1.82 | <0.001 | 63 | |
RNA聚合酶Ⅱ启动子转录的正向调节 | 1.59 | <0.001 | 93 | |
染色质组织 | 2.22 | <0.001 | 34 | |
炎症应答 | 1.94 | <0.001 | 40 | |
参与细胞凋亡过程的半胱氨酸型内肽酶活性的激活 | 3.60 | <0.001 | 14 | |
RNA聚合酶Ⅱ启动子转录的调控 | 1.41 | <0.001 | 116 | |
细胞周期 | 2.00 | <0.001 | 35 | |
神经管闭合 | 3.39 | <0.001 | 13 | |
MF | ||||
蛋白结合 | 1.15 | <0.001 | 724 | |
磷脂酰肌醇结合 | 3.10 | <0.001 | 17 | |
磷脂酰肌醇-3,4-二磷酸结合 | 5.35 | 0.001 | 8 | |
染色质结合 | 1.68 | 0.001 | 42 | |
肌动蛋白丝结合 | 2.07 | 0.001 | 24 | |
RNA聚合酶Ⅱ核心启动子近端区域序列特异性DNA结合 | 1.38 | 0.002 | 84 | |
转录辅阻遏物活性 | 2.07 | 0.003 | 21 | |
脂质结合 | 2.02 | 0.005 | 20 | |
CC | ||||
胞液 | 1.41 | <0.001 | 367 | |
细胞质 | 1.30 | <0.001 | 349 | |
细胞核 | 1.25 | <0.001 | 353 | |
细胞膜 | 1.31 | <0.001 | 224 | |
染色质 | 1.59 | <0.001 | 82 | |
核浆 | 1.24 | <0.001 | 234 | |
质膜的细胞质侧 | 2.89 | 0.001 | 15 | |
中心体 | 1.69 | 0.001 | 45 |
模块/聚类分析 | 条目 | 富集倍数 | P值 | 基因个数 |
---|---|---|---|---|
蓝色模块 | ||||
KEGG | ||||
溶酶体 | 3.93 | <0.001 | 29 | |
吞噬体 | 3.18 | <0.001 | 27 | |
肺结核 | 2.78 | <0.001 | 28 | |
类风湿性关节炎 | 3.65 | <0.001 | 19 | |
癌症通路 | 1.82 | <0.001 | 54 | |
肿瘤中PD-L1的表达和PD-1检查点通路 | 3.42 | <0.001 | 17 | |
人乳头瘤病毒感染 | 2.05 | <0.001 | 38 | |
铁死亡 | 4.80 | <0.001 | 11 | |
蓝绿色模块 | ||||
KEGG | ||||
破骨细胞分化 | 2.95 | <0.001 | 21 | |
甲状腺激素信号通路 | 2.98 | <0.001 | 19 | |
FcγR介导的吞噬作用 | 3.13 | <0.001 | 16 | |
B细胞受体信号通路 | 3.17 | 0.001 | 14 | |
糖尿病并发症中的AGE-RAGE信号通路 | 2.85 | 0.001 | 15 | |
脂质与动脉粥样硬化 | 2.12 | 0.001 | 24 | |
小细胞肺癌 | 2.89 | 0.001 | 14 | |
C型凝集素受体信号通路 | 2.74 | 0.001 | 15 |
[1] | Getahun H, Matteelli A, Chaisson RE, et al. Latent Mycobacterium tuberculosis infection. N Engl J Med, 2015, 372(22): 2127-2135. doi:10.1056/NEJMra1405427. |
[2] | 中国防痨协会. 高危人群结核分枝杆菌潜伏感染检测及预防性治疗专家共识. 中国防痨杂志, 2021, 43(9): 874-878. doi:10.3969/j.issn.1000-6621.2021.09.004. |
[3] | World Health Organization. Latent tuberculosis infection: updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. |
[4] | Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 2023, 4(1): e20. doi:10.1016/S2666-5247(22)00359-7. |
[5] |
Zellweger JP, Sotgiu G, Corradi M, et al. The diagnosis of latent tuberculosis infection (LTBI): currently available tests, future developments, and perspectives to eliminate tuberculosis (TB). Med Lav, 2020, 111(3):170-183. doi:10.23749/mdl.v111i3.9983.
pmid: 32624559 |
[6] | Qin H, Wang Y, Huang L, et al. Efficacy and Risk Factors of Interferon-Gamma Release Assays among HIV-Positive Individuals. Int J Environ Res Public Health, 2023, 20(5):4556. doi:10.3390/ijerph20054556. |
[7] | Shen BJ, Lin HH. Time-dependent association between cancer and risk of tuberculosis: A population-based cohort study. Int J Infect Dis, 2021, 108: 340-346. doi:10.1016/j.ijid.2021.05.037. |
[8] | Cadena J, Rathinavelu S, Lopez-Alvarenga JC, et al. The re-emerging association between tuberculosis and diabetes: Lessons from past centuries. Tuberculosis (Edinb), 2019, 116 S: S89-S97. doi:10.1016/j.tube.2019.04.015. |
[9] |
Singhania A, Verma R, Graham CM, et al. A modular trans-criptional signature identifies phenotypic heterogeneity of human tuberculosis infection. Nat Commun, 2018, 9(1):2308. doi:10.1038/s41467-018-04579-w.
pmid: 29921861 |
[10] | Tabone O, Verma R, Singhania A, et al. Blood transcriptomics reveal the evolution and resolution of the immune response in tuberculosis. J Exp Med, 2021, 218(10): e20210915. doi:10.1084/jem.20210915. |
[11] | Chen C, Wu Y, Li J, et al. TBtools-Ⅱ: A “one for all, all for one” bioinformatics platform for biological big-data mining. Mol Plant, 2023, 16(11):1733-1742. doi:10.1016/j.molp.2023.09.010. |
[12] | Tang D, Chen M, Huang X, et al. SRplot: A free online platform for data visualization and graphing. PLoS One, 2023, 18(11): e294236. doi:10.1371/journal.pone.0294236. |
[13] |
Carlson MR, Zhang B, Fang Z, et al. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics, 2006, 7: 40. doi:10.1186/1471-2164-7-40.
pmid: 16515682 |
[14] | Verma A, Ghoshal A, Dwivedi VP, et al. Tuberculosis: The success tale of less explored dormant Mycobacterium tuberculosis. Front Cell Infect Microbiol, 2022, 12:1079569. doi:10.3389/fcimb.2022.1079569. |
[15] | Khabibullina NF, Kutuzova DM, Burmistrova IA, et al. The Biological and Clinical Aspects of a Latent Tuberculosis Infection. Trop Med Infect Dis, 2022, 7(3):48. doi:10.3390/tropicalmed7030048. |
[16] | Cohen GM. Caspases: the executioners of apoptosis. Biochem J, 1997, 326 (Pt 1): 1-16. doi:10.1042/bj3260001. |
[17] |
Blomgran R, Desvignes L, Briken V, et al. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD 4 T cells. Cell Host Microbe, 2012, 11(1):81-90. doi:10.1016/j.chom.2011.11.012.
pmid: 22264515 |
[18] | Nisa A, Kipper FC, Panigrahy D, et al. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol, 2022, 323(5):C1444-C1474. doi:10.1152/ajpcell.00246.2022. |
[19] |
Keane J, Remold HG, Kornfeld H. Virulent Mycobacterium tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol, 2000, 164(4):2016-2020. doi:10.4049/jimmunol.164.4.2016.
pmid: 10657653 |
[20] |
Zhang W, Ellingson L, Frascoli F, et al. An investigation of tuberculosis progression revealing the role of macrophages apoptosis via sensitivity and bifurcation analysis. J Math Biol, 2021, 83(3):31. doi:10.1007/s00285-021-01655-6.
pmid: 34436682 |
[21] | Kim CH. Chemokine-chemokine receptor network in immune cell trafficking. Curr Drug Targets Immune Endocr Metabol Disord, 2004, 4(4):343-361. doi:10.2174/1568008043339712. |
[22] | Slight SR, Khader SA. Chemokines shape the immune responses to tuberculosis. Cytokine Growth Factor Rev, 2013, 24(2):105-113. doi:10.1016/j.cytogfr.2012.10.002. |
[23] | Barclay AM, Ninaber DK, van Veen S, et al. Airway epithelial cells mount an early response to mycobacterial infection. Front Cell Infect Microbiol, 2023, 13:1253037. doi:10.3389/fcimb.2023.1253037. |
[24] | Jang S, Uzelac A, Salgame P. Distinct chemokine and cytokine gene expression pattern of murine dendritic cells and macrophages in response to Mycobacterium tuberculosis infection. J Leukoc Biol, 2008, 84(5):1264-1270. doi:10.1189/jlb.1107742. |
[25] | Guler R, Ozturk M, Sabeel S, et al. Targeting Molecular Inflammatory Pathways in Granuloma as Host-Directed Therapies for Tuberculosis. Front Immunol, 2021, 12: 733853. doi:10.3389/fimmu.2021.733853. |
[26] | Algood HM, Chan J, Flynn JL. Chemokines and tuberculosis. Cytokine Growth Factor Rev, 2003, 14(6):467-477. doi:10.1016/s1359-6101(03)00054-6. |
[27] | Scott HM, Flynn JL. Mycobacterium tuberculosis in chemokine receptor 2-deficient mice: influence of dose on disease progression. Infect Immun, 2002, 70(11):5946-5954. doi:10.1128/IAI.70.11.5946-5954.2002. |
[28] |
Mack U, Migliori GB, Sester M, et al. LTBI: latent tuberculosis infection or lasting immune responses to M.tuberculosis? A TBNET consensus statement. Eur Respir J, 2009, 33(5):956-973. doi:10.1183/09031936.00120908.
pmid: 19407047 |
[29] |
Orme IM, Robinson RT, Cooper AM. The balance between protective and pathogenic immune responses in the TB-infected lung. Nat Immunol, 2015, 16(1):57-63. doi:10.1038/ni.3048.
pmid: 25521685 |
[30] | Simon HU, Yousefi S, Germic N, et al. The Cellular Functions of Eosinophils: Collegium Internationale Allergologicum (CIA) Update 2020. Int Arch Allergy Immunol, 2020, 181(1):11-23. doi:10.1159/000504847. |
[31] | Bohrer AC, Castro E, Hu Z, et al. Eosinophils are part of the granulocyte response in tuberculosis and promote host resis-tance in mice. J Exp Med, 2021, 218(10): e20210469. doi:10.1084/jem.20210469. |
[32] | Kumar R, Singh P, Kolloli A, et al. Immunometabolism of Phagocytes During Mycobacterium tuberculosis Infection. Front Mol Biosci, 2019, 6: 105. doi:10.3389/fmolb.2019.00105. |
[33] |
Italiani P, Boraschi D. From Monocytes to M1/M2 Macrophages: Phenotypical vs. Functional Differentiation. Front Immunol, 2014, 5: 514. doi:10.3389/fimmu.2014.00514.
pmid: 25368618 |
[34] | Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A, 2004, 101(13):4560-4565. doi:10.1073/pnas.0400983101. |
[35] | Mily A, Kalsum S, Loreti MG, et al. Polarization of M1 and M2 Human Monocyte-Derived Cells and Analysis with Flow Cytometry upon Mycobacterium tuberculosis Infection. J Vis Exp, 2020(163). doi:10.3791/61807. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Shi Hongyu, Zhang Guoliang, Xiao Guohui. Application of single-cell transcriptome sequencing technology in tuberculosis research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 362-368. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[11] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[12] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[13] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[14] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[15] | Duan Hongfei. Diagnosis and treatment of nontuberculous mycobacteria diseases in the past 60 years [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 863-868. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||