[1] |
Hendriks RW, Yuvaraj S, Kil LP. Targeting Bruton’s tyrosine kinase in B cell malignancies. Nat Rev Cancer, 2014, 14(4): 219-232. doi:10.1038/nrc3702.
pmid: 24658273
|
[2] |
Rada M, Barlev N, Macip S. BTK: a two-faced effector in cancer and tumour suppression. Cell Death Dis, 2018, 9(11): 1064. doi:10.1038/s41419-018-1122-8.
|
[3] |
Wen T, Wang J, Shi Y, et al. Inhibitors targeting Bruton’s tyrosine kinase in cancers: drug development advances. Leukemia, 2021, 35(2): 312-332. doi:10.1038/s41375-020-01072-6.
|
[4] |
Hu Y, Wen Z, Liu S, et al. Ibrutinib suppresses intracellular Mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect, 2020, 80(6): e19-e26. doi:10.1016/j.jinf.2020.03.003.
|
[5] |
Dhillon S. Orelabrutinib: First Approval. Drugs, 2021, 81(4): 503-507. doi:10.1007/s40265-021-01482-5.
pmid: 33704654
|
[6] |
Xu W, Song Y, Li Z, et al. Safety, Tolerability and Efficacy of Orelabrutinib, Once a Day, to Treat Chinese Patients with Relapsed or Refractory Chronic Lymphocytic Leukemia/Small Cell Leukemia. Blood, 2019, 134(Supplement_1): 4319-4319. doi:10.1182/blood-2019-123331.
|
[7] |
中国临床肿瘤学会(CSCO)淋巴瘤专家委员会. 奥布替尼治疗B细胞淋巴瘤中国专家推荐临床应用指导原则(2021年版). 白血病·淋巴瘤, 2021, 30(8): 455-460. doi:10.3760/cma.j.cn115356-20210723-00162.
|
[8] |
Deng LJ, Zhou KS, Liu LH, et al. Orelabrutinib for the treatment of relapsed or refractory MCL: a phase 1/2, open-label, multicenter, single-arm study. Blood Adv, 2023, 7(16): 4349-4357. doi:10.1182/bloodadvances.2022009168.
pmid: 37078706
|
[9] |
Qiu J, Fu Y, Chen Z, et al. BTK Promotes Atherosclerosis by Regulating Oxidative Stress, Mitochondrial Injury, and ER Stress of Macrophages. Oxid Med Cell Longev, 2021, 2021: 9972413. doi:10.1155/2021/9972413.
|
[10] |
Xu X, Xu J, Wu J, et al. Phosphorylation-Mediated IFN-gammaR2 Membrane Translocation Is Required to Activate Macrophage Innate Response. Cell, 2021, 184(5):1393-1394. doi:10.1016/j.cell.2020.02.037.
|
[11] |
Yang Y, Li S, Wang Y, et al. Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther, 2022, 7(1):329. doi:10.1038/s41392-022-01168-8.
|
[12] |
Jiao Q, Bi L, Ren Y, et al. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer, 2018, 17(1): 36. doi:10.1186/s12943-018-0801-5.
|
[13] |
Korbee CJ, Heemskerk MT, Kocev D, et al. Combined chemical genetics and data-driven bioinformatics approach identifies receptor tyrosine kinase inhibitors as host-directed antimicrobials. Nat Commun, 2018, 9(1): 358. doi:10.1038/s41467-017-02777-6.
|
[14] |
Sogi KM, Lien KA, Johnson JR, et al. The Tyrosine Kinase Inhibitor Gefitinib Restricts Mycobacterium tuberculosis Growth through Increased Lysosomal Biogenesis and Modulation of Cytokine Signaling. ACS Infect Dis, 2017, 3(8): 564-574. doi:10.1021/acsinfecdis.7b00046.
|
[15] |
World Health Organization. WHO consolidated guidelines on tuberculosis: Module 5: Management of tuberculosis in children and adolescents. Geneva: World Health Organization, 2022.
|
[16] |
Roelens M, Battista Migliori G, Rozanova L, et al. Evidence-based Definition for Extensively Drug-Resistant Tuberculosis. Am J Respir Crit Care Med, 2021, 204(6): 713-722. doi:10.1164/rccm.202009-3527OC.
|
[17] |
Anwar AI, Lu L, Plaisance CJ, et al. Fluoroquinolones: Neurological Complications and Side Effects in Clinical Practice. Cureus, 2024, 16(2): e54565. doi:10.7759/cureus.54565.
|
[18] |
Shah I, Goyal A, Shetty NS. Adverse effects of aminoglycosides in children with drug resistant tuberculosis. Infect Dis (Lond), 2019, 51(3): 230-233. doi:10.1080/23744235.2018.1540884.
|
[19] |
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, 2022, 399(10325): 629-655. doi:10.1016/S0140-6736(21)02724-0.
pmid: 35065702
|
[20] |
Kaufmann SHE, Dorhoi A, Hotchkiss RS, et al. Host-directed therapies for bacterial and viral infections. Nat Rev Drug Discov, 2018, 17(1): 35-56. doi:10.1038/nrd.2017.162.
pmid: 28935918
|
[21] |
Weber ANR, Bittner Z, Liu X, et al. Bruton’s Tyrosine Kinase: An Emerging Key Player in Innate Immunity. Front Immunol, 2017, 8: 1454. doi:10.3389/fimmu.2017.01454.
|
[22] |
Rip J, Van Der Ploeg EK, Hendriks RW, et al. The Role of Bruton’s Tyrosine Kinase in Immune Cell Signaling and Systemic Autoimmunity. Crit Rev Immunol, 2018, 38(1):17-62. doi:10.1615/CritRevImmunol.2018025184.
|
[23] |
Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A, 2010, 107(29): 13075-13080. doi:10.1073/pnas.1004594107.
|
[24] |
Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol, 2013, 31(1): 88-94. doi:10.1200/JCO.2012.42.7906.
pmid: 23045577
|
[25] |
Hu Y, Wen Z, Liu S, et al. Ibrutinib suppresses intracellular mycobacterium tuberculosis growth by inducing macrophage autophagy. J Infect, 2020, 80(6): e19-e26. doi:10.1016/j.jinf.2020.03.003.
|
[26] |
Sparks IL, Derbyshire KM, Jacobs WR Jr, et al. Mycobacterium smegmatis: The Vanguard of Mycobacterial Research. J Bacteriol, 2023, 205(1): e0033722. doi:10.1128/jb.00337-22.
|
[27] |
Lelovic N, Mitachi K, Yang J, et al. Application of Mycobacterium smegmatis as a surrogate to evaluate drug leads against Mycobacterium tuberculosis. J Antibiot (Tokyo), 2020, 73(11): 780-789. doi:10.1038/s41429-020-0320-7.
|
[28] |
T JAS, J R, Rajan A, et al. Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. J Infect Public Health, 2020, 13(9): 1255-1264. doi:10.1016/j.jiph.2020.06.023.
|