Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (8): 942-950.doi: 10.19982/j.issn.1000-6621.20240133
• Original Articles • Previous Articles Next Articles
Yu Lan1, Chen Shuangshuang1, Wang Nenhan1, Tian Lili1, Zhao Yanfeng1, Fan Ruifang1, Liu Haican2, Li Chuanyou1(), Dai Xiaowei1(
)
Received:
2024-04-10
Online:
2024-08-10
Published:
2024-08-01
Contact:
Li Chuanyou,Dai Xiaowei
E-mail:lichuanyou@ccmu.edu.cn;happydaixw@126.com
Supported by:
CLC Number:
Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains[J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. doi: 10.19982/j.issn.1000-6621.20240133
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240133
gDST | pDST | 合计 (株) | 敏感度 (%,95%CI) | 特异度 (%,95%CI) | 一致率 (%,95%CI) | Kappa值 | |
---|---|---|---|---|---|---|---|
耐药(株) | 敏感(株) | ||||||
左氧氟沙星 | 91.8(82.4~96.6) | 96.1(92.5~98.1) | 95.0(91.8~97.1) | 0.867 | |||
耐药 | 67 | 9 | 76 | ||||
敏感 | 6 | 221 | 227 | ||||
合计 | 73 | 230 | 303 | ||||
莫西沙星 | 84.0(73.8~90.1) | 96.4(92.8~98.3) | 93.1(89.5~95.6) | 0.820 | |||
耐药 | 68 | 8 | 76 | ||||
敏感 | 13 | 214 | 227 | ||||
合计 | 81 | 222 | 303 | ||||
氟喹诺酮类药物 | 84.5(74.6~91.2) | 97.7(94.5~99.1) | 94.1(90.6~96.3) | 0.847 | |||
耐药 | 71 | 5 | 76 | ||||
敏感 | 13 | 214 | 227 | ||||
合计 | 84 | 219 | 303 |
gyrA基因突变 | 菌株[株 (构成比,%)] | pDST | 突变与耐药相关 的可信度[ | |
---|---|---|---|---|
敏感(株) | 耐药(株) | |||
单位点突变 | 3(1.0) | 2 | 1 | |
88位点氨基酸(Gly88Cys) | 1(0.3) | 0 | 1 | 耐药性相关 |
90位点氨基酸(Ala90Ser) | 1(0.3) | 1 | 0 | - |
95位点氨基酸(Ser95Thr) | 1(0.3) | 1 | 0 | -a |
双位点联合突变 | 73(24.1) | 4 | 69 | |
88+91位点氨基酸(Gly88Gly+Ser91Ser) | 1(0.3) | 1 | 0 | - |
88+95位点氨基酸(Gly88Cys+Ser95Thr) | 1(0.3) | 0 | 1 | 耐药性相关a |
90+95位点氨基酸(Ala90Gly+Ser95Thr) | 1(0.3) | 0 | 1 | 与暂定耐药性无关a |
90+95位点氨基酸(Ala90Val+Ser95Thr) | 24(7.9) | 1 | 23 | 耐药性相关a |
91+95位点氨基酸(Ser91Pro+Ser95Thr) | 5(1.7) | 2 | 3 | 耐药性相关a |
94+95位点氨基酸(Asp94Ala+Ser95Thr) | 24(7.9) | 0 | 24 | 耐药性相关a |
94+95位点氨基酸(Asp94Asn+Ser95Thr) | 1(0.3) | 0 | 1 | 耐药性相关a |
94+95位点氨基酸(Asp94Gly+Ser95Thr) | 15(5.0) | 0 | 15 | 耐药性相关a |
94+95位点氨基酸(Asp94Tyr+Ser95Thr) | 1(0.3) | 0 | 1 | 耐药性相关a |
无突变 | 227(74.9) | 214 | 13 |
类型 菌株编号 | Lfx | Mfx | gDST | gyrA突变 | ||
---|---|---|---|---|---|---|
MIC(μg/ml) | pDST | MIC(μg/ml) | pDST | |||
Lfx和(或)Mfx pDST耐药而gDST敏感 | ||||||
19-414、20-1046 | 0.50 | 敏感 | 0.5 | 耐药 | 敏感 | None |
20-863、20-1143 | 1.00 | 敏感 | 0.5 | 耐药 | 敏感 | None |
18-144、20-917、21-1001 | 1.00 | 敏感 | 1.00 | 耐药 | 敏感 | None |
16-356 | 2.00 | 耐药 | 1.00 | 耐药 | 敏感 | None |
21-287 | 2.00 | 耐药 | 2.00 | 耐药 | 敏感 | None |
16-87、19-939 | 4.00 | 耐药 | 4.00 | 耐药 | 敏感 | None |
17-1231、17-1392 | 8.00 | 耐药 | 2.00 | 耐药 | 敏感 | None |
Lfx和(或)Mfx pDST敏感而gDST耐药 | ||||||
19-956 | 1.00 | 敏感 | 0.06 | 敏感 | 耐药 | Ser91Pro |
20-458 | 0.25 | 敏感 | 0.06 | 敏感 | 耐药 | Gly88Gly+Ser91Ser |
19-666 | 0.25 | 敏感 | 0.06 | 敏感 | 耐药 | Ser91Pro |
20-320 | 0.25 | 敏感 | 0.12 | 敏感 | 耐药 | Ala90Ser |
21-88 | 1.00 | 敏感 | 0.25 | 敏感 | 耐药 | Ala90Val |
17-899、20-721 | 1.00 | 敏感 | 0.50 | 耐药 | 耐药 | Asp94Ala |
20-152 | 1.00 | 敏感 | 0.50 | 耐药 | 耐药 | Ala90Val |
16-1159 | 1.00 | 敏感 | 2.00 | 耐药 | 耐药 | Ser91Pro |
19-815 | 2.00 | 耐药 | 0.06 | 敏感 | 耐药 | Asp94Gly |
17-984 | 2.00 | 耐药 | 0.25 | 敏感 | 耐药 | Ala90Val |
19-532 | 4.00 | 耐药 | 0.12 | 敏感 | 耐药 | Asp94Gly |
突变类型 | 合计 (株) | 高水平耐药 [株(构成比,%)] | Lfx MIC(株) | |||||
---|---|---|---|---|---|---|---|---|
0.25μg/ml | 0.50μg/ml | 1.00μg/ml | 2.00μg/ml | 4.00μg/ml | 8.00μg/ml | |||
Gly88Cys | 2 | 1(50.0) | 0 | 0 | 0 | 0 | 1 | 1 |
Ala90Val | 24 | 3(12.5) | 0 | 0 | 2 | 17 | 2 | 3 |
Ala90Ser | 1 | 0(0.0) | 1 | 0 | 0 | 0 | 0 | 0 |
Ala90Gly | 1 | 0(0.0) | 0 | 0 | 0 | 1 | 0 | 0 |
Ser91Pro | 5 | 0(0.0) | 1 | 0 | 2 | 1 | 1 | 0 |
Asp94Ala | 24 | 3(12.5) | 0 | 0 | 2 | 13 | 6 | 3 |
Asp94Asn | 1 | 1(1/1) | 0 | 0 | 0 | 0 | 0 | 1 |
Asp94Gly | 15 | 7(46.7) | 0 | 0 | 0 | 2 | 6 | 7 |
Asp94Tyr | 1 | 0(0.0) | 0 | 0 | 0 | 0 | 1 | 0 |
突变类型 | 合计 (株) | 高水平耐药 [株(构成 比,%)] | Mfx MIC(株) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0.06 μg/ml | 0.12 μg/ml | 0.25 μg/ml | 0.50 μg/ml | 1.00 μg/ml | 2.00 μg/ml | 4.00 μg/ml | 8.00 μg/ml | |||
Gly88Cys | 2 | 2(2/2) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 |
Ala90Val | 24 | 11(45.8) | 0 | 0 | 2 | 3 | 8 | 7 | 3 | 1 |
Ala90Ser | 1 | 0(0.0) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
Ala90Gly | 1 | 0(0.0) | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
Ser91Pro | 5 | 3(60.0) | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 |
Asp94Ala | 24 | 19(79.2) | 0 | 0 | 0 | 3 | 2 | 12 | 5 | 2 |
Asp94Asn | 1 | 1(1/1) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
Asp94Gly | 15 | 11(73.3) | 1 | 3 | 0 | 0 | 0 | 3 | 7 | 1 |
Asp94Tyr | 1 | 1(1/1) | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
[1] | World Health Organization. Global tuberculosis report 2023. Geneva:World Health Organization, 2023. |
[2] | 李宁迪, 江渊. 耐药结核病实验室诊断技术研究进展. 检验医学, 2024, 39(2): 203-208. doi:10.3969/j.issn.1673-8640.2024.02.020. |
[3] | Chen TC, Lu PL, Lin CY, et al. Fluoroquinolones are associa-ted with delayed treatment and resistance in tuberculosis: a systematic review and meta-analysis. Int J Infect Dis, 2011, 15(3): e211-e216. doi:10.1016/j.ijid.2010.11.008. |
[4] | World Health Organization. WHO consolidated guidelines on tuberculosis: Module 4: Treatment. Drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[5] | 孙海林, 任卫聪, 尚媛媛, 等. 结核分枝杆菌gyrA和gyrB基因突变与莫西沙星耐药水平关系. 中国医学前沿杂志(电子版), 2023, 15(10):67-72. doi:10.12037/YXQY.2023.10-10. |
[6] | 张治国, 杜春英, 张倩, 等. 我国结核分枝杆菌gyrA不同突变类型对氟喹诺酮类药物耐药水平的相关性研究. 中国防痨杂志, 2016, 38(9):706-711. doi:10.3969/j.issn.1000-6621.2016.09.003. |
[7] | Chen Y, Takif HE, Gao Q. Phenotypic instability of Mycobacterium tuberculosis strains harbouring clinically prevalent drug-resistant mutations. Lancet Microbe, 2023, 4(5): e292. doi:10.1016/S2666-5247(23)00007-1. |
[8] | World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. Geneva: World Health Organization, 2021. |
[9] | World Health Organization. Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance (Second edition). Geneva: World Health Organization, 2023. |
[10] | 裴少君, 欧喜超. 世界卫生组织《结核分枝杆菌耐药相关基因突变目录(第2版)》解读. 中国防痨杂志, 2024, 46(3):260-266. doi:10.19982/j.issn.1000-6621.20230450. |
[11] | World Health Organization. Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. Geneva: World Health Organization, 2018. |
[12] | World Health Organization. WHO operational handbook on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2020. |
[13] | 徐彩红, 赵雁林. 从《2020年全球结核病报告》看我国结核病防治工作. 中华传染病杂志, 2021, 39(7):392-397. doi:10.3760/cma.j.cn311365-20210406-00117. |
[14] | Yin J, Zhang H, Gao Z, et al. Transmission of multidrug-resistant tuberculosis in Beijing, China: An epidemiological and genomic analysis. Front Public Health, 2022, 10: 1019198. doi:10.3389/fpubh.2022.1019198. |
[15] | 詹建, 游国庆, 何霞, 等. 两种结核分枝杆菌氟喹诺酮类药物耐药性检测方法比较及不一致原因初探. 中国防痨杂志, 2023, 45(11):1058-1063. doi:10.19982/j.issn.1000-6621.20230161. |
[16] | 王玉峰, 逄宇. 世界卫生组织《结核分枝杆菌耐药相关基因突变目录及其临床应用指南》解读. 中国临床新医学, 2022, 15(10):900-906. doi:10.3969/j.issn.1674-3806.2022.10.03. |
[17] | 姬祥, 郭南, 黄巧玲, 等. 新疆喀什地区结核分枝杆菌分离株氧氟沙星耐药基因gyrA突变位点分析. 中国病原生物学杂志, 2018, 13(4): 390-394, 398. doi:10.13350/j.cjpb.180415. |
[18] | 杨彩虹, 张萍, 买买提艾力·艾合木提, 等. 高分辨率熔解曲线检测结核分枝杆菌对氧氟沙星耐药性研究[J/OL]. 中国动物传染病学报, 2021[2024-06-28]. https://doi.org/10.19958/j.cnki.cn31-2031/s.20211104.003. doi:10.19958/j.cnki.cn31-2031/s.20211104.003.[网络预发表]. |
[19] | Miotto P, Tessema B, Tagliani E, et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in Mycobacterium tuberculosis. Eur Respir J, 2017, 50(6): 1701354. doi:10.1183/13993003.01354-2017. |
[20] | 赵金云, 金法祥, 许文芳, 等. 应用GeneXpert MTB/RIF对耐多药MTB及RIF耐药性的快速检测. 中华医院感染学杂志, 2017, 27(19): 4340-4343. doi:10.11816/cn.ni.2017-170693. |
[21] | Sharma D, Lata M, Faheem M, et al. Role of M.tuberculosis protein Rv2005c in the aminoglycosides resistance. Microb Pathog, 2019, 132:150-155. doi:10.1016/j.micpath.2019.05.001. |
[22] | 代小伟, 李传友, 王嫩寒, 等. 利福平耐药结核分枝杆菌对A组抗结核药物的耐药性研究. 中华结核和呼吸杂志, 2023, 46(11): 1110-1117. doi:10.3760/cma.j.cn112147-20230804-00046. |
[23] | 胡彦, 刘洁, 沈静, 等. 重庆地区耐多药结核分枝杆菌对氟喹诺酮类药物耐药的相关基因特征分析. 中国防痨杂志, 2018, 40(10): 1060-1065. doi:10.3969/j.issn.1000-6621.2018.10.006. |
[24] | Li M, Zhang Y, Wu Z, et al. Transmission of fluoroquinolones resistance among multidrug-resistant tuberculosis in Shanghai, China: a retrospective population-based genomic epidemiology study. Emerg Microbes Infect, 2024, 13(1): 2302837. doi:10.1080/22221751.2024.2302837. |
[25] | 张玉娇, 李晓静, 米凯霞. 结核分枝杆菌耐氟喹诺酮类药物的分子机制研究进展. 遗传, 2016, 38(10):918-927. doi:10.16288/j.yczz.16-136. |
[26] | 何广伟. 氟喹诺酮类药物在结核病治疗中的研究进展. 医学信息, 2019, 32(7):64-66. doi:10.3969/j.issn.1006-1959.2019.07.020. |
[27] | 王海燕. 氟喹诺酮类药物在结核病治疗中的应用价值探讨. 医学理论与实践, 2016, 29(17):3049-3050. doi:10.19381/j.issn.1001-7585.2016.17.027. |
[28] | 王艳勋, 夏国光, 程洋, 等. 无氟喹诺酮类药物奈诺沙星对结核病鉴别诊断病例临床分析. 临床药物治疗杂志, 2019, 17(7):27-29,54. doi:10.3969/j.issn.1672-3384.2019.07.007. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Chen Shuangshuang, Tian Lili, Wang Nenhan, Yang Xinyu, Zhao Yanfeng, Li Chuanyou, Dai Xiaowei. Analysis of in vitro antibacterial effects of 17 antibiotics against rapidly growing mycobacteria in the Beijing area [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1056-1062. |
[10] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[11] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[12] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[13] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||