Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (8): 935-941.doi: 10.19982/j.issn.1000-6621.20240184
• Original Articles • Previous Articles Next Articles
Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping()
Received:
2024-05-10
Online:
2024-08-10
Published:
2024-08-01
Contact:
Pan Liping
E-mail:panliping2006@163.com
Supported by:
CLC Number:
Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. doi: 10.19982/j.issn.1000-6621.20240184
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240184
引物名称 | 引物序列(5'~3') |
---|---|
mshD cx F | ggccgggatggtatgcaaga |
mshD cx R | agctcctgcttacgacttct |
874 cx F | ctgattctgtggataaccgt |
874 cx R | gacctgggcaccgcattgcc |
XbaI-Hsp60 F | tccgtcaggatggccttctagacggtgaccacaacgcgc |
mshD-Hsp60 R | cgccagtcaagcgccgtcacgcaattgtcttggccattgc |
Hsp60-mshD F | gcaatggccaagacaattgcgtgacggcgcttgactggcg |
NotI-mshD R | cgaccgagcgcaacgcgtgctcagttatccgtgccagcca |
菌株类型 | 菌落形成单位(CFU, | 处理后存活率(%, | |||||
---|---|---|---|---|---|---|---|
处理前 (×105) | DTT处理 (×104) | H2O2处理 (×103) | SDS处理 (×103) | DTT | H2O2 | SDS | |
WT | 900.00±72.11 | 626.67±181.48 | 206.67±50.33 | 106.67±30.55 | 6.96±2.02 | 0.23±0.06 | 0.12±0.03 |
ΔmshD | 680.00±91.65 | 1.20±0.20 | 8.67±3.06 | 9.33±3.06 | 0.02±0.00 | 0.01±0.00 | 0.01±0.00 |
ΔmshD::mshD | 913.33±90.18 | 606.67±70.24 | 240.00±52.92 | 160.00±40.00 | 6.64±0.77 | 0.26±0.06 | 0.18±0.04 |
F值 | 7.110 | 30.030 | 26.340 | 20.660 | 29.700 | 25.520 | 19.540 |
P值 | 0.026 | <0.001 | 0.001 | 0.002 | <0.001 | 0.001 | 0.002 |
菌株类型 | 菌落形成单位(CFU, | 处理后存活率(%, | |||||
---|---|---|---|---|---|---|---|
处理前 (×105) | DTT处理 (×104) | H2O2处理 (×103) | SDS处理 (×103) | DTT | H2O2 | SDS | |
WT | 1013.33±80.83 | 720.00±60.00 | 293.33±70.24 | 126.67±23.09 | 7.11±0.59 | 0.29±0.07 | 0.13±0.02 |
ΔmshD | 906.67±50.33 | 573.33±94.52 | 273.30±64.29 | 126.67±30.55 | 6.32±1.04 | 0.30±0.07 | 0.14±0.03 |
ΔmshD::mshD | 980.00±40.00 | 673.33±70.24 | 293.33±70.24 | 180.00±52.92 | 6.87±0.72 | 0.30±0.07 | 0.18±0.05 |
F值 | 2.512 | 2.893 | 0.0857 | 2.000 | 0.742 | 0.025 | 1.835 |
P值 | 0.161 | 0.132 | 0.919 | 0.216 | 0.515 | 0.976 | 0.239 |
[1] | Yang H, Sha W, Liu Z, et al. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg Microbes Infect, 2018, 7(1): 34. doi:10.1038/s41426-018-0032-2. |
[2] | 张蓝月, 耿艺漫, 贾红彦, 等. 耻垢分枝杆菌新型毒素-抗毒素系统MSMEG_3435-3436基因功能的初步研究. 中国防痨杂志, 2020, 42(2): 133-142. doi:10.3969/j.issn.1000-6621.2020.02.010. |
[3] | Li B, He S, Tan Z, et al. Impaired ESX-3 Induces Bedaquiline Persistence in Mycobacterium abscessus Growing Under Iron-Limited Conditions. Small Methods, 2023, 7(9):e2300183. doi:10.1002/smtd.202300183. |
[4] | Bei C, Zhu J, Culviner PH, et al. Genetically encoded transcriptional plasticity underlies stress adaptation in Mycobacterium tuberculosis. Nat Commun, 2024, 15(1): 3088. doi:10.1038/s41467-024-47410-5. |
[5] | 张蓝月, 朱传智, 潘丽萍, 等. 结核分枝杆菌乙酰转移酶功能研究进展. 中华结核和呼吸杂志, 2023, 46(11): 1141-1146. doi:10.3760/cma.j.cn112147-20230725-00028. |
[6] |
Yang H, Wang F, Guo X, et al. Interception of host fatty acid metabolism by mycobacteria under hypoxia to suppress anti-TB immunity. Cell Discov, 2021, 7(1): 90. doi:10.1038/s41421-021-00301-1.
pmid: 34608123 |
[7] | 段玉衡, 张蓝月, 董静, 等. 结核分枝杆菌乙酰转移酶fadA3对宿主蛋白乙酰化修饰及其体内存活影响的研究. 中国防痨杂志, 2023, 45(4): 391-400. doi:10.19982/j.issn.1000-6621.20220525. |
[8] | Xie L, Yang W, Fan X, et al. Comprehensive analysis of protein acetyltransferases of human pathogen Mycobacterium tuberculosis. Biosci Rep, 2019, 39(12): BSR20191661. doi:10.1042/bsr20191661. |
[9] | Vetting MW, Roderick SL, Yu M, et al. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci, 2003, 12(9): 1954-1959. doi:10.1110/ps.03153703. |
[10] | 葛文雪, 陈润, 白嘉诚, 等. 结核分枝杆菌硫醇乙酰基转移酶基因敲除株的构建及其生物学特性分析. 微生物与感染, 2019, 14(5): 282-288. doi:10.3969/j.issn.1673-6184.2019.05.004. |
[11] | Yan MY, Zheng D, Li SS, et al. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in Mycobacterium tuberculosis. Sci Adv, 2022, 8(47): eadd5907. doi:10.1126/sciadv.add5907. |
[12] |
Goude R, Roberts DM, Parish T. Electroporation of mycobacteria. Methods Mol Biol, 2015, 1285: 117-130. doi:10.1007/978-1-4939-2450-9_7.
pmid: 25779313 |
[13] | Yan MY, Li SS, Ding XY, et al. A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in Mycobacterium tuberculosis. mBio, 2020, 11(1): e02364-19. doi:10.1128/mBio.02364-19. |
[14] | Vilchèze C, Av-Gay Y, Attarian R, et al. Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis. Mol Microbiol, 2008, 69(5): 1316-1329. doi:10.1111/j.1365-2958.2008.06365.x. |
[15] | Sao Emani C, Gallant JL, Wiid IJ, et al. The role of low molecular weight thiols in Mycobacterium tuberculosis. Tuberculosis (Edinburgh), 2019, 116: 44-55. doi:10.1016/j.tube.2019.04.003. |
[16] | Saini V, Cumming BM, Guidry L, et al. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis. Cell Rep, 2016, 14(3): 572-585. doi:10.1016/j.celrep.2015.12.056. |
[17] | Kunota TTR, Rahman MA, Truebody BE, et al. Mycobacterium tuberculosis H2S Functions as a Sink to Modulate Central Metabolism, Bioenergetics, and Drug Susceptibility. Antioxidants (Basel), 2021, 10(8):1285. doi:10.3390/antiox10081285. |
[18] | Jayasinghe YP, Banco MT, Lindenberger JJ, et al. The Mycobacterium tuberculosis mycothiol S-transferase is divalent metal-dependent for mycothiol binding and transfer. RSC Med Chem, 2023, 14(3): 491-500. doi:10.1039/d2md00401a. |
[19] | Shee S, Singh S, Tripathi A, et al. Moxifloxacin-Mediated Killing of Mycobacterium tuberculosis Involves Respiratory Downshift, Reductive Stress, and Accumulation of Reactive Oxygen Species. Antimicrob Agents Chemother, 2022, 66(9): e0059222. doi:10.1128/aac.00592-22. |
[20] | Hong Y, Zeng J, Wang X, et al. Post-stress bacterial cell death mediated by reactive oxygen species. Proc Natl Acad Sci U S A, 2019, 116(20): 10064-10071. doi:10.1073/pnas.1901730116. |
[21] |
Seaver LC, Imlay JA. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J Bacteriol, 2001, 183(24): 7182-7189. doi:10.1128/jb.183.24.7182-7189.2001.
pmid: 11717277 |
[22] |
Sassetti CM, Boyd DH, Rubin EJ. Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol, 2003, 48(1): 77-84. doi:10.1046/j.1365-2958.2003.03425.x.
pmid: 12657046 |
[23] | Rengarajan J, Bloom BR, Rubin EJ. Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A, 2005, 102(23): 8327-8332. doi:10.1073/pnas.0503272102. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[13] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[14] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
[15] | Fu Keyan, Zhu Bangzheng, Ye Jian. Research progress on interstitial lung disease combined with Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 823-829. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||