Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (7): 808-814.doi: 10.19982/j.issn.1000-6621.20240120
• Original Article • Previous Articles Next Articles
Zhang Muli1, Sun Zhaogang2, Cao Tingming2, Xie Zhongyao1()
Received:
2024-04-01
Online:
2024-07-10
Published:
2024-07-01
Contact:
Xie Zhongyao
E-mail:451810769@qq.com
Supported by:
CLC Number:
Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection[J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. doi: 10.19982/j.issn.1000-6621.20240120
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240120
蛋白类型 分组 | ≥40岁者 | <40岁者 | χ2值 | P值 |
---|---|---|---|---|
KLF2 | ||||
HC组 | 0.320(0.145,0.496) | 0.306(0.207,0.493) | 0.070 | 0.7909 |
LTBI组 | 0.224(0.116,0.315)a | 0.223(0.165,0.343)a | 0.465 | 0.4952 |
ATB组 | 0.246(0.179,0.297)a | 0.194(0.145,0.303)a | 2.624 | 0.1053 |
GBP5 | ||||
HC组 | 0.193(0.139,0.278) | 0.172(0.109,0.286) | 2.518 | 0.1126 |
LTBI组 | 0.194(0.144,0.273) | 0.196(0.150,0.292) | 0.106 | 0.7453 |
ATB组 | 0.324(0.267,0.423)ab | 0.328(0.255,0.390)ab | 0.1772 | 0.6738 |
DUSP3 | ||||
HC组 | 0.216(0.152,0.289) | 0.190(0.120,0.303) | 2.530 | 0.1117 |
LTBI组 | 0.214(0.167,0.259) | 0.200(0.141,0.240) | 0.789 | 0.3745 |
ATB组 | 0.339(0.245,0.491)ab | 0.316(0.187,0.417)ab | 3.230 | 0.0723 |
蛋白及组合 | AUC(95%CI)值 | 敏感度 (%) | 特异度 (%) | 约登 指数 | Cut-off值 | P值 |
---|---|---|---|---|---|---|
区分ATB和LTBI | ||||||
KLF2 | 0.534(0.467~0.600) | 91.72 | 17.24 | 0.100 | >0.106a | 0.319 |
GBP5 | 0.761(0.704~0.817) | 78.62 | 68.28 | 0.469 | >0.250a | <0.001 |
DUSP3 | 0.720(0.659~0.781) | 68.97 | 75.17 | 0.441 | >0.249a | <0.001 |
KLF2联合GBP5 | 0.760(0.703~0.816) | 78.62 | 68.28 | 0.469 | >0.457b | <0.001 |
KLF2联合DUSP3 | 0.718(0.658~0.779) | 69.66 | 73.10 | 0.428 | >0.452b | <0.001 |
GBP5联合DUSP3 | 0.800(0.744~0.847) | 73.79 | 75.86 | 0.500 | >0.452b | <0.001 |
KLF2、GBP5、DUSP3联合 | 0.800(0.745~0.848) | 78.62 | 73.10 | 0.517 | >0.427b | <0.001 |
区分ATB和HC | ||||||
KLF2 | 0.629(0.572~0.688) | 75.17 | 54.00 | 0.292 | <0.299a | <0.001 |
GBP5 | 0.740(0.688~0.793) | 78.62 | 67.50 | 0.461 | >0.249a | <0.001 |
DUSP3 | 0.716(0.661~0.772) | 73.10 | 66.00 | 0.391 | >0.237a | <0.001 |
KLF2联合GBP5 | 0.750(0.697~0.801) | 66.90 | 76.50 | 0.434 | >0.453b | <0.001 |
KLF2联合DUSP3 | 0.749(0.697~0.801) | 57.93 | 78.00 | 0.389 | >0.454b | <0.001 |
GBP5联合DUSP3 | 0.781(0.729~0.826) | 77.93 | 71.50 | 0.494 | >0.374b | <0.001 |
KLF2、GBP5、DUSP3联合 | 0.780(0.733~0.829) | 74.48 | 72.50 | 0.469 | >0.396b | <0.001 |
区分LTBI和HC | ||||||
KLF2 | 0.658(0.589~0.716) | 71.34 | 57.00 | 0.273 | <0.285a | <0.001 |
GBP5 | 0.542(0.481~0.602) | 78.62 | 35.00 | 0.136 | >0.144a | 0.188 |
DUSP3 | 0.532(0.471~0.593) | 90.34 | 22.00 | 0.123 | >0.125a | 0.312 |
KLF2联合GBP5 | 0.652(0.594~0.710) | 72.41 | 55.00 | 0.274 | >0.433b | <0.001 |
KLF2联合DUSP3 | 0.655(0.597~0.713) | 68.97 | 59.00 | 0.280 | >0.442b | <0.001 |
GBP5联合DUSP3 | 0.514(0.452~0.575) | 50.23 | 56.50 | 0.068 | <0.421b | 0.669 |
KLF2、GBP5、DUSP3联合 | 0.657(0.599~0.715) | 71.03 | 56.00 | 0.271 | >0.435b | <0.001 |
[1] | World Health Organization. Global tuberculosis report 2023. Geneva: World Health Organization, 2023. |
[2] | Dutau G. The history of tuberculosis. Arch Pediatr, 2005, 12 Suppl 2: S88-95. doi:10.1016/s0929-693x(05)80022-3. |
[3] |
Vynnycky E, Fine PE. The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect, 1997, 119(2): 183-201. doi:10.1017/s0950268897007917.
pmid: 9363017 |
[4] | 中国防痨协会临床专业委员会. 结核病临床诊治进展年度报告(2012年)(第一部分结核病临床诊断). 中国防痨杂志, 2013, 35(6): 405-426. |
[5] | World Health Organization. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Policy update. Geneva: World Health Organization, 2020. |
[6] | World Health Organization. WHO meeting report of a technical expert consultation:non-inferiority analysis of Xpert MTF/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organization, 2017. |
[7] | World Health Organization. High priority target product profiles for new tuberculosis diagnostics:report of a consensus meeting. Geneva: World Health Organization, 2014. |
[8] |
Hoang LT, Jain P, Pillay TD, et al. Transcriptomic signatures for diagnosing tuberculosis in clinical practice: a prospective, multicentre cohort study. Lancet Infect Dis, 2021, 21(3): 366-375. doi:10.1016/s1473-3099(20)30928-2.
pmid: 33508221 |
[9] | Warsinske H, Vashisht R, Khatri P. Host-response-based gene signatures for tuberculosis diagnosis: A systematic comparison of 16 signatures. PLoS Med, 2019, 16(4): e1002786. doi:10.1371/journal.pmed.1002786. |
[10] | Sutherland JS, van der Spuy G, Gindeh A, et al. Diagnostic Accuracy of the Cepheid 3-gene Host Response Fingerstick Blood Test in a Prospective, Multi-site Study: Interim Results. Clin Infect Dis, 2022, 74(12): 2136-2141. doi:10.1093/cid/ciab839. |
[11] | Chen L, Hua J, He X. Coexpression Network Analysis-Based Identification of Critical Genes Differentiating between Latent and Active Tuberculosis. Dis Markers, 2022, 2022: 2090560. doi:10.1155/2022/2090560. |
[12] | Perumal P, Abdullatif MB, Garlant HN, et al. Validation of Differentially Expressed Immune Biomarkers in Latent and Active Tuberculosis by Real-Time PCR. Front Immunol, 2020, 11: 612564. doi:10.3389/fimmu.2020.612564. |
[13] | Zhang X, Xu H, Li C, et al. Up-regulated SAMD9L modulated by TLR2 and HIF-1α as a promising biomarker in tuberculosis. J Cell Mol Med, 2022, 26(10): 2935-2946. doi:10.1111/jcmm.17307. |
[14] |
Francisco NM, Fang YM, Ding L, et al. Diagnostic accuracy of a selected signature gene set that discriminates active pulmonary tuberculosis and other pulmonary diseases. J Infect, 2017, 75(6): 499-510. doi:10.1016/j.jinf.2017.09.012.
pmid: 28941629 |
[15] | Warsinske HC, Rao AM, Moreira FMF, et al. Assessment of Validity of a Blood-Based 3-Gene Signature Score for Progression and Diagnosis of Tuberculosis, Disease Severity, and Treatment Response. JAMA Netw Open, 2018, 1(6): e183779. doi:10.1001/jamanetworkopen.2018.3779. |
[16] |
Sweeney TE, Braviak L, Tato CM, et al. Genome-wide expression for diagnosis of pulmonary tuberculosis: a multicohort analysis. Lancet Respir Med, 2016, 4(3): 213-224. doi:10.1016/s2213-2600(16)00048-5.
pmid: 26907218 |
[17] | 中华人民共和国国家卫生和计划生育委员会. WS 288—2017 肺结核诊断,.2017-11-09. |
[18] | 中华医学会结核病学分会, 《中华结核和呼吸杂志》编辑委员会. γ-干扰素释放试验在中国应用的建议. 中华结核和呼吸杂志, 2014, 37(10): 744-747. doi:10.3760/cma.j.issn.1001-0939.2014.10.011. |
[19] | Bagcchi S. WHO’s Global Tuberculosis Report 2022. Lancet Microbe, 2023, 4(1):e20. doi:10.1016/s2666-5247(22)00359-7. |
[20] |
Das M, Lu J, Joseph M, et al. Kruppel-like factor 2 (KLF2) regulates monocyte differentiation and functions in mBSA and IL-1β-induced arthritis. Curr Mol Med, 2012, 12(2): 113-125. doi:10.2174/156652412798889090.
pmid: 22280353 |
[21] |
Mahabeleshwar GH, Kawanami D, Sharma N, et al. The myeloid transcription factor KLF 2 regulates the host response to polymicrobial infection and endotoxic shock. Immunity, 2011, 34(5): 715-728. doi:10.1016/j.immuni.2011.04.014.
pmid: 21565532 |
[22] | Das H, Kumar A, Lin Z, et al. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A, 2006, 103(17): 6653-6658. doi:10.1073/pnas.0508235103. |
[23] | 荆堂堂, 倪晋泽, 赵玉菲, 等. Krüppel样转录因子2的功能. 暨南大学学报(自然科学与医学版), 2018, 39(5): 376-384. doi:10.11778/j.jdxb.2018.05.002. |
[24] | Jha P, Das H. KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation. Int J Mol Sci, 2017, 18(11): 2383. doi:10.3390/ijms18112383. |
[25] | Fujiwara Y, Hizukuri Y, Yamashiro K, et al. Guanylate-binding protein 5 is a marker of interferon-γ-induced classically activated macrophages. Clin Transl Immunology, 2016, 5(11): e111. doi:10.1038/cti.2016.59. |
[26] | Yao X, Liu W, Li X, et al. Whole blood GBP 5 protein levels in patients with and without active tuberculosis. BMC Infect Dis, 2022, 22(1): 328. doi:10.1186/s12879-022-07214-8. |
[27] | Laux da Costa L, Delcroix M, Dalla Costa ER, et al. A real-time PCR signature to discriminate between tuberculosis and other pulmonary diseases. Tuberculosis (Edinb), 2015, 95(4): 421-425. doi:10.1016/j.tube.2015.04.008. |
[28] | Manley GCA, Parker LC, Zhang Y. Emerging Regulatory Roles of Dual-Specificity Phosphatases in Inflammatory Airway Disease. Int J Mol Sci, 2019, 20(3):678. doi:10.3390/ijms20030678. |
[29] | 姚向阳, 邓晨希, 刘伟, 等. 4种转录组标志物用于活动性结核的诊断研究. 中国人兽共患病学报, 2022, 38(3): 210-216. doi:10.3969/j.issn.1002-2694.2022.00.004. |
[30] | 周佳玉. KLF2、GBP5、DUSP3基因在活动性肺结核和潜伏结核感染者中的诊断价值. 青岛: 青岛大学, 2021. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Li Leilei, Shi Lei, Wang Lin, Li Hongwei, Xu Liran, Pang Yu, Song Yanzheng. Clinical characteristics analysis of HIV-infected cases diagnosed with tuberculosis after surgery due to pulmonary nodules [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 266-273. |
[6] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[7] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[8] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[9] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[10] | Zhang Guoqin, Qu Ting, Meng Qinglin, Zhou Lin, Liu Eryong. Implementation update of strategy for the control of tuberculosis and HIV/AIDS co-infection in China [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 12-17. |
[11] | Li Fudong, Ma Xiaoxue, Zhou Jian, Wang Dafu, Zhang Yueying, Gong Tingting, Rao Wen, Hong Feng, Li Shijun, Li Jinlan. Characteristics and treatment outcome analysis of MTB/HIV dual infection patients in Guizhou Province from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 36-43. |
[12] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[13] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[14] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
[15] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||