Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (2): 239-244.doi: 10.19982/j.issn.1000-6621.20230377
Previous Articles Next Articles
Received:
2023-10-19
Online:
2024-02-10
Published:
2024-01-30
Contact:
Pan Liping
E-mail:panliping2006@163.com
Supported by:
CLC Number:
Shang Xuetian, Pan Liping. Role of tissue kallikrein family in pathogenesis of microorganism infection[J]. Chinese Journal of Antituberculosis, 2024, 46(2): 239-244. doi: 10.19982/j.issn.1000-6621.20230377
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20230377
病原体 | KLK | 疾病 | 作用 | 机制 |
---|---|---|---|---|
病毒 | ||||
流感病毒 | KLK1、KLK5、 KLK12 | 流感 | 促进病毒感染细胞 | 裂解HA分子,并增强了病毒在细胞中的复制,从而增强了病毒的载量 |
人乳头瘤病毒 | KLK8 | 各种疣 | 促进病毒感染细胞 | 切割HPV主要衣壳蛋白L1,引起构象变化,使小衣壳蛋白L2暴露重要表位,促进病毒脱壳进入宿主细胞 |
冠状病毒 | KLK13 | 肺炎 | 促进病毒感染 | 裂解HCoV-HKU S蛋白的S1/S2区域促进病毒的感染 |
鼻病毒 | KLK1 | 气道炎症 | 加重气道炎症 | 促进气道中激肽生成 |
细菌 | ||||
结核分枝杆菌 | KLK1 | 结核病 | 区分潜伏感染和活动性结核病 | 可能通过调节宿主KKS系统和其他分子信号通路影响疾病进程 |
牛分枝杆菌 | KLK12 | 牛结核病 | 保护性免疫、区分潜伏感染和活动性结核病 | 通过mTOR/MAPK/TSC2和BAX/Bcl-2/Cytc/Caspase3通路调节自噬、凋亡和促炎症因子释放;诱导KLK12上调,与B1R/B2R相互作用,启动ERK信号通路,致MMP1和MMP9分子上调,在肉芽肿形成中起着重要作用 |
金黄色葡萄球菌 | KLK6、KLK13、 KLK14 | 特应性皮炎 | 使皮炎加重 | 降解角质形成细胞的桥粒芯糖蛋白-1(desmoglein-1, DSG-1)和中间丝蛋白 |
牙龈卟啉单胞菌 | KLK13 | 牙周炎 | 使牙周炎加重 | 降解KLK13抑制剂SPINK6 |
脑膜炎奈瑟菌 | KLK1 | 脑膜炎 | 干扰细菌定植 | KLK1裂解细菌表面NHBA抗原,干扰细菌定植 |
真菌 | ||||
念珠菌 | KLK1 | 肾损伤 | 保护肾脏 | KLK1激活的KKS系统在念珠菌感染中发挥保护肾脏的重要作用 |
[1] |
Shaw JL, Diamandis EP. Distribution of 15 Human Kallikreins in Tissues and Biological Fluids. Clin Chem, 2007, 53(8):1423-1432. doi:10.1373/clinchem.2007.088104.
URL pmid: 17573418 |
[2] | Dagnino APA, Campos MM, Silva RBM. Kinins and Their Receptors in Infectious Diseases. Pharmaceuticals (Basel), 2020, 13(9):215. doi:10.3390/ph13090215. |
[3] | Kalinska M, Meyer-Hoffert U, Kantyka T, et al. Kallikreins-The melting pot of activity and function. Biochimie, 2016, 122:270-282. doi:10.1016/j.biochi.2015.09.023. |
[4] |
Lundwall A, Brattsand M. Kallikrein-related peptidases. Cell Mol Life Sci, 2008, 65(13):2019-2038. doi:10.1007/s00018-008-8024-3.
URL pmid: 18344018 |
[5] |
Fagerberg L, Hallström BM, Oksvold P, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol Cell Proteomics, 2014, 13(2):397-406. doi:10.1074/mcp.M113.035600.
URL pmid: 24309898 |
[6] |
Ehrenfeld P, Bhoola KD, Matus CE, et al. Functional interrelationships between the kallikrein-related peptidases family and the classical kinin system in the human neutrophil. Biol Chem, 2018, 399(9):925-935. doi:10.1515/hsz-2017-0338.
URL pmid: 29883315 |
[7] |
Mann K, Lipp B, Grunst J, et al. Determination of kallikrein by radioimmunoassay in human body fluids. Agents Actions, 1980, 10(4):329-334. doi:10.1007/BF01971434.
URL pmid: 6905640 |
[8] | Pantano E, Marchi S, Biagini M, et al. NHBA is processed by kallikrein from human saliva. PLoS One, 2019, 14(8):e203234. doi:10.1371/journal.pone.0203234. |
[9] | Magnen M, Gueugnon F, Guillon A, et al. Kallikrein-Related Peptidase 5 Contributes to H3N2 Influenza Virus Infection in Human Lungs. Virol, 2017, 91(16):e00421-17. doi:10.1128/JVI.00421-17. |
[10] |
Maurer M, Bader M, Bas M, et al. New topics in bradykinin research. Allergy, 2011, 66(11):1397-1406. doi:10.1111/j.1398-9995.2011.02686.x.
URL pmid: 21859431 |
[11] |
Dong Y, Harrington BS, Adams MN, et al. Activation of membrane-bound proteins and receptor systems: a link between tissue kallikrein and the KLK-related peptidases. Biol Chem, 2014, 395(9):977-990. doi:10.1515/hsz-2014-0147.
URL pmid: 24854540 |
[12] | Ge P, Ross TM. Evolution of A (H1N1) pdm 09 influenza virus masking by glycosylation. Expert Rev Vaccines, 2021, 20(5):519-526. doi:10.1080/14760584.2021.1908135. |
[13] | Leu C, Yang M, Chung N, et al. Kallistatin Ameliorates Influenza Virus Pathogenesis by Inhibition of Kallikrein-Related Peptidase 1-Mediated Cleavage of Viral Hemagglutinin. Antimicrob Agents Chemother, 2015, 59(9):5619-5630. doi:10.1128/AAC.00065-15. |
[14] |
Hamilton BS, Whittaker GR.Cleavage Activation of Human-adapted Influenza Virus Subtypes by Kallikrein-related Peptidases 5 and 12. J Biol Chem, 2013, 288(24):17399-17407. doi:10.1074/jbc.M112.440362.
URL pmid: 23612974 |
[15] |
Cerqueira C, Samperio VP, Vogeley C, et al. Kallikrein-8 Proteolytically Processes Human Papillomaviruses in the Extracellular Space To Facilitate Entry into Host Cells. J Virol, 2015, 89(14):7038-7052. doi:10.1128/JVI.00234-15.
URL pmid: 25926655 |
[16] | Becker M, Greune L, Schmidt MA, et al. Extracellular Conformational Changes in the Capsid of Human Papillomaviruses Contribute to Asynchronous Uptake into Host Cells. J Virol, 2018, 92(11):e2106-e2117. doi:10.1128/JVI.02106-17. |
[17] | Milewska A, Falkowski K, Kulczycka M, et al. Kallikrein 13 serves as a priming protease during infection by the human coronavirus HKU1. Sci Signal, 2020, 13(659):a9902. doi:10.1126/scisignal.aba9902. |
[18] | Christiansen SC, Eddleston J, Bengtson SH, et al. Experimental rhinovirus infection increases human tissue kallikrein activation in allergic subjects. Int Arch Allergy Immunol, 2008, 147(4):299-304. doi:10.1159/000144037. |
[19] |
Naclerio RM, Proud D, Lichtenstein LM, et al. Kinins are generated during experimental rhinovirus colds. J Infect Dis, 1988, 157(1):133-142. doi:10.1093/infdis/157.1.133.
URL pmid: 2447198 |
[20] | Alikhani M, Javadi A, Aalikhani M. Des-Arg 9 bradykinin and bradykinin potentially trigger cytokine storm in patients with COVID-19. Iran J Immunol, 2021, 18(1):93-94. doi:10.22034/iji.2021.89684.1962. |
[21] | de Maat S, de Mast Q, Danser AH J, et al. Impaired Breakdown of Bradykinin and Its Metabolites as a Possible Cause for Pulmonary Edema in COVID-19 Infection. Semin Thromb Hemost, 2020, 46(7):835-837. doi:10.1055/s-0040-1712960. |
[22] | Ramani K, Garg AV, Jawale CV, et al. The Kallikrein-Kinin System: A Novel Mediator of IL-17-Driven Anti-Candida Immunity in the Kidney. PLoS Pathog, 2016, 12(11):e1005952. doi:10.1371/journal.ppat.1005952. |
[23] | Ramani K, Jawale CV, Verma AH, et al. Unexpected kidney-restricted role for IL-17 receptor signaling in defense against systemic Candida albicans infection. JCI Insight, 2018, 3(9):e98241. doi:10.1172/jci.insight.98241. |
[24] | Qian X, Nguyen DTM, Li Y, et al. Predictive value of serum bradykinin and desArg9-bradykinin levels for chemotherapeutic responses in active tuberculosis patients: A retrospective case series. Tuberculosis (Edinb), 2016, 101S:S109-S118. doi:10.1016/j.tube.2016.09.022. |
[25] | Rodrigues-Junior VS, Pail PB, Villela AD, et al. Effect of the bradykinin 1 receptor antagonist SSR240612 after oral adminis-tration in Mycobacterium tuberculosis-infected mice. Tubercu-losis (Edinb), 2018, 109:1-7. doi:10.1016/j.tube.2018.01.003. |
[26] | Pan L, Wei N, Jia H, et al. Genome-wide transcriptional profiling identifies potential signatures in discriminating active tuberculosis from latent infection. Oncotarget, 2017, 8(68):112907-112916. doi:10.18632/oncotarget.22889. |
[27] |
Mukai S, Fukushima T, Naka D, et al. Activation of hepatocyte growth factor activator zymogen (pro-HGFA) by human kallikrein 1-related peptidases. FEBS J, 2008, 275(5):1003-1017. doi:10.1111/j.1742-4658.2008.06265.x.
URL pmid: 18221492 |
[28] | Imaizumi T. Hepatocyte growth factor (HGF) in lung tuberculosis. Kekkaku, 1996, 71(10):587-589. |
[29] | He J, Fan Y, Shen D, et al. Characterization of cytokine profile to distinguish latent tuberculosis from active tuberculosis and healthy controls. Cytokine, 2020, 135:155218. doi:10.1016/j.cyto.2020.155218. |
[30] |
Higa F, Akamine M, Furugen M, et al. Hepatocyte growth factor levels in Legionella pneumonia: a retrospective study. BMC Infect Dis, 2011, 11:74. doi:10.1186/1471-2334-11-74.
URL pmid: 21429184 |
[31] |
Hedstrom L. Serine protease mechanism and specificity. Chem Rev, 2002, 102(12):4501-4524. doi:10.1021/cr000033x.
URL pmid: 12475199 |
[32] | Araujo Z, Macias-Segura N, Lopez-Ramos JE, et al. Diagnostic accuracy of combinations of serological biomarkers for identifying clinical tuberculosis. J Infect Dev Ctries, 2018, 12(6):429-441. doi:10.3855/jidc.9554. |
[33] |
Williams MR, Nakatsuji T, Sanford JA, et al. Staphylococcus aureus Induces Increased Serine Protease Activity in Keratinocytes. J Invest Dermatol, 2017, 137(2):377-384. doi:10.1016/j.jid.2016.10.008.
URL pmid: 27765722 |
[34] |
Langer M, Duggan ES, Booth JL, et al. Bacillus anthracis Lethal Toxin Reduces Human Alveolar Epithelial Barrier Function. Infect Immun, 2012, 80(12):4374-4387. doi:10.1128/IAI.01011-12.
URL pmid: 23027535 |
[35] |
Plaza K, Kalinska M, Bochenska O, et al. Gingipains of Porphyromonas gingivalis Affect the Stability and Function of Serine Protease Inhibitor of Kazal-type 6 (SPINK6), a Tissue Inhibitor of Human Kallikreins. J Biol Chem, 2016, 291(36):18753-18764. doi:10.1074/jbc.M116.722942.
URL pmid: 27354280 |
[36] | Dwivedi M, Bajpai K. The chamber of secretome in Mycobacterium tuberculosis as a potential therapeutic target. Biotechnol Genet Eng Rev, 2023, 39(1):1-44. doi:10.1080/02648725.2022.2076031. |
[37] | Sabir N, Hussain T, Liao Y, et al. Kallikrein 12 Regulates Innate Resistance of Murine Macrophages against Mycobacterium bovis Infection by Modulating Autophagy and Apoptosis. Cells, 2019, 8(5):415. doi:10.3390/cells8050415. |
[38] | Wang Y, Qu M, Liu Y, et al. KLK12 Regulates MMP-1 and MMP-9 via Bradykinin Receptors: Biomarkers for Differentiating Latent and Active Bovine Tuberculosis. Int J Mol Sci, 2022, 23(20):12257. doi:10.3390/ijms232012257. |
[39] | Srinivasan S, Kryza T, Batra J, et al. Remodelling of the tumour microenvironment by the kallikrein-related peptidases. J Nat Rev Cancer, 2022, 22(4):223-238. doi:10.1038/s41568-021-00436-z. |
[40] | Fan B, Niu Y, Zhang A, et al. KLK4 Silencing Inhibits the Growth of Chromophobe Renal Cell Carcinoma through ERK/AKT Signaling Pathway. Kidney Blood Press Res, 2022, 47(12):702-710. doi:10.1159/000527412. |
[41] | Sun H, Li J, Wang Q, et al. Kallikrein-related peptidase-8 (KLK8) aggravated hypoxia-induced right ventricular hypertrophy by targeting P38 MAPK/P53 signaling pathway. Tissue Rell, 2022, 78:101874. doi:10.1016/j.tice.2022.101874. |
[42] | Li S, Garcia M, Gewiss RL, et al. Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo. PLoS Genet, 2017, 13(4):e1006743. doi:10.1371/journal.pgen.1006743. |
[43] |
Brandenburg J, Reiling N. The Wnt Blows: On the Functional Role of Wnt Signaling in Mycrobacterium tuberculosis Infection and Beyond. Front Immunol, 2016, 7:635. doi:10.3389/fimmu.2016.00635.
URL pmid: 28082976 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[6] | Li Leilei, Shi Lei, Wang Lin, Li Hongwei, Xu Liran, Pang Yu, Song Yanzheng. Clinical characteristics analysis of HIV-infected cases diagnosed with tuberculosis after surgery due to pulmonary nodules [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 266-273. |
[7] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[8] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[9] | You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. |
[10] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[11] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[12] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[13] | Zhang Guoqin, Qu Ting, Meng Qinglin, Zhou Lin, Liu Eryong. Implementation update of strategy for the control of tuberculosis and HIV/AIDS co-infection in China [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 12-17. |
[14] | Li Fudong, Ma Xiaoxue, Zhou Jian, Wang Dafu, Zhang Yueying, Gong Tingting, Rao Wen, Hong Feng, Li Shijun, Li Jinlan. Characteristics and treatment outcome analysis of MTB/HIV dual infection patients in Guizhou Province from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 36-43. |
[15] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||