Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (12): 1527-1534.doi: 10.19982/j.issn.1000-6621.20240347
• Review Articles • Previous Articles Next Articles
Received:
2024-08-18
Online:
2024-12-10
Published:
2024-12-03
Contact:
Chen Zhi, Email: chenzhidoctor@126.com
Supported by:
CLC Number:
Li Chaofan, Chen Zhi. Advances in the application of animal models and 3D cell models in tuberculosis research[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1527-1534. doi: 10.19982/j.issn.1000-6621.20240347
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240347
[1] | World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | Sankar P, Mishra BB. Early innate cell interactions with Mycobacterium tuberculosis in protection and pathology of tuberculosis. Front Immunol, 2023, 14: 1260859. doi:10.3389/fimmu.2023.1260859. |
[3] | Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci, 2020, 77(10): 1859-1878. doi:10.1007/s00018-019-03353-5. |
[4] | Fonseca KL, Rodrigues PNS, Olsson IAS, et al. Experimental study of tuberculosis: From animal models to complex cell systems and organoids. PLoS Pathog, 2017, 13(8): e1006421. doi:10.1371/journal.ppat.1006421. |
[5] | Gong W, Liang Y, Wu X. Animal Models of Tuberculosis Vaccine Research: An Important Component in the Fight against Tuberculosis. Biomed Res Int, 2020, 2020: 4263079. doi:10.1155/2020/4263079. |
[6] | Smith CM, Baker RE, Proulx MK, et al. Host-pathogen genetic interactions underlie tuberculosis susceptibility in genetically diverse mice. Elife, 2022, 11: e74419. doi:10.7554/eLife.74419. |
[7] | Perlman RL. Mouse models of human disease: An evolutionary perspective. Evol Med Public Health, 2016, 2016(1): 170-176. doi:10.1093/emph/eow014. |
[8] | 朱婷婷, 王明哲, 刘万里. MTB感染小鼠动物模型的建立及研究现状. 疾病预防控制通报, 2024, 39(3):93-96. doi:10.13215/j.cnki.jbyfkztb.2401007. |
[9] | Jia Q, Masleša-Galic'S, Nava S, et al. Listeria-vectored multi-antigenic tuberculosis vaccine protects C57BL/6 and BALB/c mice and guinea pigs against Mycobacterium tuberculosis challenge. Commun Biol, 2022, 5(1): 1388. doi:10.1038/s42003-022-04345-1. |
[10] |
Singh AK, Gupta UD. Animal models of tuberculosis: Lesson learnt. Indian J Med Res, 2018, 147(5): 456-463. doi:10.4103/ijmr.IJMR_554_18.
pmid: 30082569 |
[11] | Plumlee CR, Duffy FJ, Gern BH, et al. Ultra-low Dose Aerosol Infection of Mice with Mycobacterium tuberculosis More Closely Models Human Tuberculosis. Cell Host Microbe, 2021, 29(1): 68-82. e5. doi:10.1016/j.chom.2020.10.003. |
[12] | Plumlee CR, Barrett HW, Shao DE, et al. Assessing vaccine-mediated protection in an ultra-low dose Mycobacterium tuberculosis murine model. PLoS Pathog, 2023, 19(11): e1011825. doi:10.1371/journal.ppat.1011825. |
[13] | Soldevilla P, Vilaplana C, Cardona PJ. Mouse Models for Mycobacterium tuberculosis Pathogenesis: Show and Do Not Tell. Pathogens, 2022, 12(1): 49. doi:10.3390/pathogens12010049. |
[14] | Seto S, Nakamura H, Guo TC, et al. Spatial multiomic profiling reveals the novel polarization of foamy macrophages within necrotic granulomatous lesions developed in lungs of C3HeB/FeJ mice infected with Mycobacterium tuberculosis. Front Cell Infect Microbiol, 2022, 12: 968543. doi:10.3389/fcimb.2022.968543. |
[15] | Ramey ME, Kaya F, Bauman AA, et al. Drug distribution and efficacy of the DprE 1 inhibitor BTZ-043 in the C3HeB/FeJ mouse tuberculosis model. Antimicrob Agents Chemother, 2023, 67(11):e0059723. doi:10.1128/aac.00597-23. |
[16] | Nandi B, Behar SM. Regulation of neutrophils by interferon-γ limits lung inflammation during tuberculosis infection. J Exp Med, 2011, 208(11): 2251-2262. doi:10.1084/jem.20110919. |
[17] | Allie N, Grivennikov SI, Keeton R, et al. Prominent role for T cell-derived tumour necrosis factor for sustained control of Mycobacterium tuberculosis infection. Sci Rep, 2013, 3: 1809. doi:10.1038/srep01809. |
[18] | Corleis B, Bastian M, Hoffmann D, et al. Animal models for COVID-19 and tuberculosis. Front Immunol, 2023, 14: 1223260. doi:10.3389/fimmu.2023.1223260. |
[19] | Brendel C, Rio P, Verhoeyen E. Humanized mice are precious tools for evaluation of hematopoietic gene therapies and preclinical modeling to move towards a clinical trial. Biochem Pharmacol, 2020, 174: 113711. doi:10.1016/j.bcp.2019.113711. |
[20] | Lepard M, Yang JX, Afkhami S, et al. Comparing Current and Next-Generation Humanized Mouse Models for Advancing HIV and HIV/Mtb Co-Infection Studies. Viruses, 2022, 14(9): 1927. doi:10.3390/v14091927. |
[21] | Bohórquez JA, Adduri S, Ansari D, et al. A novel humanized mouse model for HIV and tuberculosis co-infection studies. Front Immunol, 2024, 15: 1395018. doi:10.3389/fimmu.2024.1395018. |
[22] | Yang F, Labani-Motlagh A, Bohorquez JA, et al. Bacteriophage therapy for the treatment of Mycobacterium tuberculosis infections in humanized mice. Commun Biol, 2024, 7(1): 294. doi:10.1038/s42003-024-06006-x. |
[23] | Sergeeva M, Romanovskaya-Romanko E, Zabolotnyh N, et al. Mucosal Influenza Vector Vaccine Carrying TB10.4 and HspX Antigens Provides Protection against Mycobacterium tuberculosis in Mice and Guinea Pigs. Vaccines (Basel), 2021, 9(4): 394. doi:10.3390/vaccines9040394. |
[24] | Yang HJ, Wang D, Wen X, et al. One Size Fits All? Not in In Vivo Modeling of Tuberculosis Chemotherapeutics. Front Cell Infect Microbiol, 2021, 11: 613149. doi:10.3389/fcimb.2021.613149. |
[25] | Eckhardt E, Li Y, Mamerow S, et al. Pharmacokinetics and Efficacy of the Benzothiazinone BTZ-043 against Tuberculous Mycobacteria inside Granulomas in the Guinea Pig Model. Antimicrob Agents Chemother, 2023, 67(4): e0143822. doi:10.1128/aac.01438-22. |
[26] | Creissen E, Izzo L, Dawson C, et al. Guinea Pig Model of Mycobacterium tuberculosis Infection. Curr Protoc, 2021, 1(12): e312. doi:10.1002/cpz1.312. |
[27] | Luo G, Zeng D, Liu J, et al. Temporal and cellular analysis of granuloma development in mycobacterial infected adult zebrafish. J Leukoc Biol, 2024, 115(3): 525-535. doi:10.1093/jleuko/qiad145. |
[28] | Salina EG, Makarov V. Mycobacterium tuberculosis Dormancy: How to Fight a Hidden Danger. Microorganisms, 2022, 10(12): 2334. doi:10.3390/microorganisms10122334. |
[29] | Cheng T, Kam JY, Johansen MD, et al. High content analysis of granuloma histology and neutrophilic inflammation in adult zebrafish infected with Mycobacterium marinum. Micron, 2020, 129: 102782. doi:10.1016/j.micron.2019.102782. |
[30] | Gao Y, Li J, Guo X, et al. L-Tyrosine Limits Mycobacterial Survival in Tuberculous Granuloma. Pathogens, 2023, 12(5): 654. doi:10.3390/pathogens12050654. |
[31] | Varela M, Meijer AH. A fresh look at mycobacterial pathogenicity with the zebrafish host model. Mol Microbiol, 2022, 117(3): 661-669. doi:10.1111/mmi.14838. |
[32] | Muñoz-Sánchez S, Varela M, van der Vaart M, et al. Using Zebrafish to Dissect the Interaction of Mycobacteria with the Autophagic Machinery in Macrophages. Biology (Basel), 2023, 12(6): 817. doi:10.3390/biology12060817. |
[33] | Basheer F, Sertori R, Liongue C, et al. Zebrafish: A Relevant Genetic Model for Human Primary Immunodeficiency (PID) Disorders?. Int J Mol Sci, 2023, 24(7): 6468. doi:10.3390/ijms24076468. |
[34] | Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, et al. Integrating fish models in tuberculosis vaccine development. Dis Model Mech, 2020, 13(8): dmm045716. doi:10.1242/dmm.045716. |
[35] |
Bailone RL, Fukushima HCS, Ventura Fernandes BH, et al. Zebrafish as an alternative animal model in human and animal vaccination research. Lab Anim Res, 2020, 36: 13. doi:10.1186/s42826-020-00042-4.
pmid: 32382525 |
[36] | Parikka M, Hammarén MM, Harjula SK, et al. Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish. PLoS Pathog, 2012, 8(9): e1002944. doi:10.1371/journal.ppat.1002944. |
[37] | Hunter L, Ruedas-Torres I, Agulló-Ros I, et al. Comparative pathology of experimental pulmonary tuberculosis in animal models. Front Vet Sci, 2023, 10: 1264833. doi:10.3389/fvets.2023.1264833. |
[38] | 涂振阳, 蓝常贡, 谢克恭, 等. 兔结核病模型的应用研究进展. 微生物学杂志, 2019, 39(6):102-108. doi:10.3969/j.issn.1005-7021.2019.06.014. |
[39] | Hunter L, Hingley-Wilson S, Stewart GR, et al. Dynamics of Macrophage, T and B Cell Infiltration Within Pulmonary Granulomas Induced by Mycobacterium tuberculosis in Two Non-Human Primate Models of Aerosol Infection. Front Immunol, 2022, 12: 776913. doi:10.3389/fimmu.2021.776913. |
[40] | Kauffman KD, Sakai S, Lora NE, et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol, 2021, 6(55): eabf3861. doi:10.1126/sciimmunol.abf3861. |
[41] | Sibley L, Daykin-Pont O, Sarfas C, et al. Differences in host immune populations between rhesus macaques and cynomolgus macaque subspecies in relation to susceptibility to Mycobacterium tuberculosis infection. Sci Rep, 2021, 11(1): 8810. doi:10.1038/s41598-021-87872-x. |
[42] | PLOS ONE Staff. Correction: reactivation of latent tuberculosis in cynomolgus macaques infected with SIV is associated with early peripheral T cell depletion and not virus load. PLoS One, 2015, 10(4): e0124221. doi:10.1371/journal.pone.0124221. |
[43] |
Larson EC, Ellis-Connell A, Rodgers MA, et al. Pre-existing Simian Immunodeficiency Virus Infection Increases Expression of T Cell Markers Associated with Activation during Early Mycobacterium tuberculosis Coinfection and Impairs TNF Responses in Granulomas. J Immunol, 2021, 207(1): 175-188. doi:10.4049/jimmunol.2100073.
pmid: 34145063 |
[44] | 马嘉烨, 徐进川, 晏博, 等. 结核潜伏感染动物模型的研究进展. 微生物与感染, 2021, 16(5): 363-372. doi:10.3969/j.issn.1673-6184.2021.05.011. |
[45] | 郭佳俊, 邱燕, 胡璨, 等. 3D结核球模型的构建及特性验证:基于人髓系THP-1细胞与卡介苗. 南方医科大学学报, 2023, 43(12):2095-2102. doi:10.12122/j.issn.1673-4254.2023.12.14. |
[46] | Mukundan S, Singh P, Shah A, et al. In Vitro Miniaturized Tuberculosis Spheroid Model. Biomedicines, 2021, 9(9): 1209. doi:10.3390/biomedicines9091209. |
[47] | Bielecka MK, Tezera LB, Zmijan R, et al. A Bioengineered Three-Dimensional Cell Culture Platform Integrated with Microfluidics To Address Antimicrobial Resistance in Tuberculosis. mBio, 2017, 8(1): e02073-16. doi:10.1128/mBio.02073-16. |
[48] |
Demchenko A, Lavrov A, Smirnikhina S. Lung organoids: current strategies for generation and transplantation. Cell Tissue Res, 2022, 390(3): 317-333. doi:10.1007/s00441-022-03686-x.
pmid: 36178558 |
[49] | Hughes T, Dijkstra KK, Rawlins EL, et al. Open questions in human lung organoid research. Front Pharmacol, 2023, 13: 1083017. doi:10.3389/fphar.2022.1083017. |
[50] |
Ettayebi K, Crawford SE, Murakami K, et al. Replication of human noroviruses in stem cell-derived human enteroids. Science, 2016, 353(6306): 1387-1393. doi:10.1126/science.aaf5211.
pmid: 27562956 |
[51] | Estes MK, Ettayebi K, Tenge VR, et al. Human Norovirus Cultivation in Nontransformed Stem Cell-Derived Human Intestinal Enteroid Cultures: Success and Challenges. Viruses, 2019, 11(7): 638. doi:10.3390/v11070638. |
[52] | Kühl L, Graichen P, von Daacke N, et al. Human Lung Organoids-A Novel Experimental and Precision Medicine Approach. Cells, 2023, 12(16): 2067. doi:10.3390/cells12162067. |
[53] | Iakobachvili N, Leon-Icaza SA, Knoops K, et al. Mycobacteria-host interactions in human bronchiolar airway organoids. Mol Microbiol, 2022, 117(3): 682-692. doi:10.1111/mmi.14824. |
[54] | Evans KV, Lee JH. Alveolar wars: The rise of in vitro models to understand human lung alveolar maintenance, regeneration, and disease. Stem Cells Transl Med, 2020, 9(8): 867-881. doi:10.1002/sctm.19-0433. |
[55] | Corrò C, Novellasdemunt L, Li VSW. A brief history of organoids. Am J Physiol Cell Physiol, 2020, 319(1): C151-C165. doi:10.1152/ajpcell.00120.2020. |
[56] | Lu T, Cao Y, Zhao P, et al. Organoid: a powerful tool to study lung regeneration and disease. Cell Regen, 2021, 10(1): 21. doi:10.1186/s13619-021-00082-8. |
[57] | 朱国峰, 刘晓清. 结核病比较免疫学时代的机遇和挑战. 结核与肺部疾病杂志, 2020, 1(4):195-212. doi:10.3969/j.issn.2096-8493.2020.03.002. |
[58] | Basaraba RJ, Hunter RL. Pathology of Tuberculosis: How the Pathology of Human Tuberculosis Informs and Directs Animal Models. Microbiol Spectr, 2017, 5(3). doi:10.1128/microbiolspec.TBTB2-0029-2016. |
[59] | 钟鹏飞, 保鹏涛, 檀英霞. 人肺类器官用于肺结核病研究进展及前景. 中国药理学与毒理学杂志, 2022, 36(8):612-618. doi:10.3867/j.issn.1000-3002.2022.08.008. |
[60] | Novelli G, Spitalieri P, Murdocca M, et al. Organoid factory: The recent role of the human induced pluripotent stem cells (hiPSCs) in precision medicine. Front Cell Dev Biol, 2023, 10: 1059579. doi:10.3389/fcell.2022.1059579. |
[1] | Tuberculosis Control Branch of Chinese Antituberculosis Association, The Youth Branch of Chinese Antituberculosis Association, Editorial Board of Chinese Journal of Antituberculosis. Evidence-based guidelines for application of digital adherence technology in tuberculosis medication management in China [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 385-397. |
[2] | Li Jinhao, Hu Dongmei, Xu Caihong. Investigation on the willingness of tuberculosis health-care workers to implement tuberculosis preventive treatment and analysis of influencing factors [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 398-407. |
[3] | Li Yuhong, Mei Jinzhou, Su Wei, Ruan Yunzhou, Liu Yushu, Zhao Yanlin, Liu Xiaoqiu. Analysis of the treatment outcomes and influencing factors of rifampicin-resistant pulmonary tuberculosis patients aged 65 and above in China from 2015 to 2021 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 408-415. |
[4] | Jiang Xue, Bai Yunlong, Ma Jianjun, An Yuan, Yang Fan, Zhao Qinglong. Status and influencing factors of diagnosis and treatment delay of rifampicin resistant pulmonary tuberculosis patients, Jilin Province, 2020—2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 416-424. |
[5] | Wu Xuan, Zhang Yanqiu, Xu Jiying, Meng Dan, Sun Dingyong. Analysis of factors influencing the treatment outcomes of patients with pulmonary tuberculosis and diabetes mellitus in Henan Province (2019—2023) [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 425-431. |
[6] | An Yuan, Bai Yunlong, Zhao Qinglong, Ma Jianjun, Jiang Xue, Pan Yan, Gao Ying, Gao Zhihui. Analysis of treatment outcomes and influencing factors of patients with pulmonary tuberculosis complicated with diabetes mellitus in Jilin Province,2018—2022 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 432-438. |
[7] | Feng Wei, Zheng Hailun, Meng Weili, Luo Ping. Analysis of under-reporting before arrival of pulmonary tuberculosis patients registered and managed by Tuberculosis Prevention and Control Institutions in Xicheng District, Beijing from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 439-443. |
[8] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[9] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[10] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[11] | Zhu Mingzhi, Shao Yanqin, Fan Dapeng, Liu Libin, Mei Bin, Dai Lingshan, Cai Long. Diagnostic value of urine lipoarabinomannan antigen detection in extrapulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 471-476. |
[12] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[13] | Shang Xiyu, Zhang Huifang, Cao Yuqing, Xiong Yibai, Ji Xinyu, Tian Yaxin, Li Jiajia, Wang Ni, Ma Yan. Bibliometric analysis of global research status and hotspots in the basic research of Traditional Chinese Medicine for tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 482-497. |
[14] | Qin Lili, Yang Chengqing, Mai Hongzhen, Xu Qifeng, Xue Xinying, Lu Xiwei. Advances in the clinical diagnosis and treatment of post-tuberculosis chronic pulmonary aspergillosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 498-504. |
[15] | Luo Li, Luo Linzi, Yin Quhua, Zhou Lei, Lu Zhibin, Ding Yan, Xiao Yangbao. Progress in bronchoscopic diagnosis and treatment of lymph node fistula tracheobronchial tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 505-512. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||