Chinese Journal of Antituberculosis ›› 2024, Vol. 46 ›› Issue (12): 1519-1526.doi: 10.19982/j.issn.1000-6621.20240270
• Original Articles • Previous Articles Next Articles
Wen Weinong1, An Zhenxiang1,2(), He Yuanli1,3, He Song1,2, Liu Chuang1,2, Sun Kai1,2
Received:
2024-07-01
Online:
2024-12-10
Published:
2024-12-03
Contact:
An Zhenxiang, Email:anzhenxiang057@gzy.edu.cn
Supported by:
CLC Number:
Wen Weinong, An Zhenxiang, He Yuanli, He Song, Liu Chuang, Sun Kai. The causal relationship between immune cells and pulmonary tuberculosis: a mendelian randomization study[J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1519-1526. doi: 10.19982/j.issn.1000-6621.20240270
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240270
免疫细胞表型 | 多效残差及 离群值检验 | Egger 回归检验 | Cochran’s Q值 |
---|---|---|---|
非同型转换记忆B细胞 | P=0.619 | P=0.355 | 逆方差加权法:P=0.587;Egger回归:P=0.582 |
IgD+CD38- B细胞表面CD19水平 | P=0.510 | P=0.724 | 逆方差加权法:P=0.300;Egger回归:P=0.184 |
非调节性CD45RA-CD4T细胞表面CD25水平 | P=0.521 | P=0.092 | 逆方差加权法:P=0.499;Egger回归:P=0.351 |
CD33高表达HLA-DR+细胞表面CD45水平 | P=0.300 | P=0.375 | 逆方差加权法:P=0.242;Egger回归:P=0.259 |
CD39+分泌型CD4+调节性T细胞比例 | P=0.843 | P=0.754 | 逆方差加权法:P=0.913;Egger回归:P=0.821 |
CD33-HLA-DR+细胞表面HLA-DR水平 | P=0.949 | P=0.579 | 逆方差加权法:P=0.935;Egger回归:P=0.932 |
单核细胞中的程序性细胞死亡配体1 | P=0.998 | P=0.821 | 逆方差加权法:P=0.995;Egger回归:P=0.986 |
CD14-CD16-细胞表面HLA-DR水平 | P=0.570 | P=0.623 | 逆方差加权法:P=0.529;Egger回归:P=0.455 |
[1] | 王吉耀, 葛均波, 邹和建. 实用内科学. 16版. 北京: 人民卫生出版社,2022: 446. |
[2] | Zhou G, Luo Q, Luo S, et al. Indeterminate results of interferon gamma release assays in the screening of latent tuberculosis infection: a systematic review and meta-analysis. Front Immunol, 2023, 14: 1170579. doi:10.3389/fimmu.2023.1170579. |
[3] | Li LS, Yang L, Zhuang L, et al. From immunology to artificial intelligence: revolutionizing latent tuberculosis infection diagnosis with machine learning. Mil Med Res, 2023, 10(1): 58. doi:10.1186/s40779-023-00490-8. |
[4] |
Flynn JL, Chan J. Immune cell interactions in tuberculosis. Cell, 2022, 185(25): 4682-4702. doi:10.1016/j.cell.2022.10.025.
pmid: 36493751 |
[5] | 中国人民解放军总医院第八医学中心全军结核病研究所/全军结核病防治重点实验室/结核病诊疗新技术北京市重点实验室, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 活动性结核病患者免疫功能状态评估和免疫治疗专家共识(2021年版). 中国防痨杂志, 2022, 44(1): 9-27. doi:10.19982/j.issn.1000-6621.20210680. |
[6] | Lyashchenko KP, Vordermeier HM, Waters WR. Memory B cells and tuberculosis. Vet Immunol Immunopathol, 2020, 221: 110016. doi:10.1016/j.vetimm.2020.110016. |
[7] | Rijnink WF, Ottenhoff THM, Joosten SA. B-cells and antibodies as contributors to effector immune responses in tuberculosis. Front Immunol, 2021, 12: 640168. doi:10.3389/fimmu.2021.640168. |
[8] | 郭萌, 吴文, 李敬文, 等. 基于文献计量学的“结核”主题高被引文献特征分析. 中国防痨杂志, 2024, 46(5): 567-577. doi:10.19982/j.issn.1000-6621.20240075. |
[9] | Orrù V, Steri M, Sidore C, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy. Nat Genet, 2020, 52(10): 1036-1045. doi:10.1038/s41588-020-0684-4. |
[10] |
Sidore C, Busonero F, Maschio A, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers. Nat Genet, 2015, 47(11): 1272-1281. doi:10.1038/ng.3368.
pmid: 26366554 |
[11] | Wang C, Zhu D, Zhang D, et al. Causal role of immune cells in schizophrenia: Mendelian randomization (MR) study. BMC Psychiatry, 2023, 23(1): 590. doi:10.1186/s12888-023-05081-4. |
[12] | 鲁印飞, 李龙, 赵霞, 等. 基于双向孟德尔随机化研究循环免疫细胞与冠心病风险之间的因果关系. 华中科技大学学报(医学版), 2024, 53(4):487-493. doi:10.3870/j.issn.1672-0741.24.03.002. |
[13] | Sproviero W, Winchester L, Newby D, et al. High blood pressure and risk of dementia: a two-sample Mendelian randomization study in the UK Biobank. Biol Psychiatry, 2021, 89(8): 817-824. doi:10.1016/j.biopsych.2020.12.015. |
[14] | Niu PP, Song B, Wang X, et al. Serum uric acid level and multiple sclerosis: a mendelian randomization study. Front Genet, 2020, 11: 254. doi:10.3389/fgene.2020.00254. |
[15] | Su D, Ai Y, Zhu G, et al. Genetically predicted circulating levels of cytokines and the risk of osteoarthritis: A mendelian randomization study. Front Genet, 2023, 14: 1131198. doi:10.3389/fgene.2023.1131198. |
[16] | 吴广涛, 秦刚, 何凯毅, 等. 免疫细胞与膝骨关节炎之间因果作用:一项两样本双向孟德尔随机化分析. 中国组织工程研究, 2025, 29(5):1081-1090. doi:10.12307/2025.292. |
[17] | Linge I, Kondratieva E, Apt A. Prolonged B-lymphocyte-mediated immune and inflammatory responses to tuberculosis infection in the lungs of TB-resistant mice. Int J Mol Sci, 2023, 24(2): 1140. doi:10.3390/ijms24021140. |
[18] |
Choreño-Parra JA, Bobba S, Rangel-Moreno J, et al. Mycobacterium tuberculosis HN878 infection induces human-like B-cell follicles in mice. J Infect Dis, 2020, 221(10): 1636-1646. doi:10.1093/infdis/jiz663.
pmid: 31832640 |
[19] |
Abreu MT, Carvalheiro H, Rodrigues-Sousa T, et al. Alterations in the peripheral blood B cell subpopulations of multidrug-resistant tuberculosis patients. Clin Exp Med, 2014, 14(4): 423-429. doi:10.1007/s10238-013-0258-1.
pmid: 24068613 |
[20] | Otero DC, Rickert RC. CD 19 function in early and late B cell development. Ⅱ. CD 19 facilitates the pro-B/pre-B transition. J Immunol, 2003, 171(11): 5921-5930. doi:10.4049/jimmunol.171.11.5921. |
[21] | 陈兵月, 张文艺, 王东侠, 等. CD38分子表达与成年人急性B淋巴细胞白血病预后的关系. 标记免疫分析与临床, 2011, 18(3):196-198. doi:10.3969/j.issn.1006-1703.2011.03.023. |
[22] | Ahmed A, Rakshit S, Vyakarnam A. HIV-TB co-infection: mechanisms that drive reactivation of Mycobacterium tuberculosis in HIV infection. Oral Dis, 2016, 22 Suppl: 53-60. doi:10.1111/odi.12390. |
[23] |
Tippalagama R, Singhania A, Dubelko P, et al. HLA-DR marks recently divided antigen-specific effector CD 4 T cells in active tuberculosis patients. J Immunol, 2021, 207(2): 523-533. doi:10.4049/jimmunol.2100011.
pmid: 34193602 |
[24] | 刘蒙蒙, 杜忠华, 胡瑞萍, 等. CD45RA/CD45RO过渡表达γδ型T细胞急性淋巴细胞白血病1例报道并文献复习. 中国医学前沿杂志(电子版), 2022, 14(9):50-53. doi:10.12037/YXQY.2022.09-09. |
[25] | Cao RR, Yu XH, Xiong MF, et al. The immune factors have complex causal regulation effects on bone mineral density. Front Immunol, 2022, 13: 959417. doi:10.3389/fimmu.2022.959417. |
[26] | Song JW, Huang HH, Zhang C, et al. Expression of CD39 is correlated with HIV DNA levels in naïve tregs in chronically infected ART naïve patients. Front Immunol, 2019, 10: 2465. doi:10.3389/fimmu.2019.02465. |
[27] |
Tang Y, Jiang L, Zheng Y, et al. Expression of CD39 on FoxP3+ T regulatory cells correlates with progression of HBV infection. BMC Immunol, 2012, 13: 17. doi:10.1186/1471-2172-13-17.
pmid: 22489829 |
[28] | Zhang XW, Bi XW, Liu PP, et al. Expression of PD-L 1 on monocytes is a novel predictor of prognosis in natural killer/T-cell lymphoma. Front Oncol, 2020, 10: 1360. doi:10.3389/fonc.2020.01360. |
[29] | Pan SW, Shu CC, Huang JR, et al. PD-L1 expression in monocytes correlates with bacterial burden and treatment outcomes in active pulmonary tuberculosis. Int J Mol Sci, 2022, 23(3): 1619. doi:10.3390/ijms23031619. |
[30] | Hillman H, Khan N, Singhania A, et al. Single-cell profiling reveals distinct subsets of CD14+ monocytes drive blood immune signatures of active tuberculosis. Front Immunol, 2023, 13: 1087010. doi:10.3389/fimmu.2022.1087010. |
[31] |
Lugo-Villarino G, Neyrolles O. Dressed not to kill: CD16+ monocytes impair immune defence against tuberculosis. Eur J Immunol, 2013, 43(2): 327-330. doi:10.1002/eji.201243256.
pmid: 23322255 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Wang Yingchao, Liu Weiyi, Ji Xiuxiu, Shang Xuetian, Jia Hongyan, Zhang Lanyue, Sun Qi, Du Boping, Zhu Chuanzhi, Pan Liping, Zhang Zongde. Profile analysis of circRNA expression and identification of diagnostic markers in peripheral blood mononuclear cells of tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 460-470. |
[4] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[5] | Li Min, Yao Yushan, Qiao Haixia, Lei Hong. Association between pulmonary tuberculosis and the gut microbiota: treatment strategies [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 520-526. |
[6] | Li Leilei, Shi Lei, Wang Lin, Li Hongwei, Xu Liran, Pang Yu, Song Yanzheng. Clinical characteristics analysis of HIV-infected cases diagnosed with tuberculosis after surgery due to pulmonary nodules [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 266-273. |
[7] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[8] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[9] | Expert Consensus on the Diagnosis and Treatment of Spinal Tuberculosis Combined with HIV/AIDS Patients Group, Combined with HIV/AIDS Patients Group Chinese Antituberculosis Association, Chinese Antituberculosis Association of STD and AIDS Prevention and Control, the Western China Bone Tuberculosis Alliance, the North China Bone the North China Bone. Expert consensus on diagnosis and treatment of spinal tuberculosis with HIV/AIDS (2nd Edition) [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 1-11. |
[10] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[11] | Zhang Guoqin, Qu Ting, Meng Qinglin, Zhou Lin, Liu Eryong. Implementation update of strategy for the control of tuberculosis and HIV/AIDS co-infection in China [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 12-17. |
[12] | Li Fudong, Ma Xiaoxue, Zhou Jian, Wang Dafu, Zhang Yueying, Gong Tingting, Rao Wen, Hong Feng, Li Shijun, Li Jinlan. Characteristics and treatment outcome analysis of MTB/HIV dual infection patients in Guizhou Province from 2018 to 2023 [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 36-43. |
[13] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[14] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[15] | Zhong Lingshan, Wang Li, Zhang Shuo, Li Nan, Yang Qingyuan, Ding Wenlong, Chen Xingzhi, Huang Chencui, Xing Zhiheng. A machine learning model based on CT images combined with radiomics and semantic features for diagnosis of nontuberculous mycobacterium lung disease and pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1042-1049. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||