Chinese Journal of Antituberculosis ›› 2015, Vol. 37 ›› Issue (2): 194-198.doi: 10.3969/j.issn.1000-6621.2015.02.015
Previous Articles Next Articles
YANG La, LI Chang-shan
Received:
2014-09-15
Online:
2015-02-10
Published:
2015-03-21
Contact:
LI Chang-shan
E-mail:changshanli058@outlook.com
YANG La, LI Chang-shan. Progress of pulmonary tuberculosis related microRNAs[J]. Chinese Journal of Antituberculosis, 2015, 37(2): 194-198. doi: 10.3969/j.issn.1000-6621.2015.02.015
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2015.02.015
[1]Murray CJ, Styblo K, Rouillon A. Tuberculosis in developing countries: burden, intervention and cost. Bull Int Union Tuberc Lung Dis, 1990, 65(1):6-24.[2]Wu F, Zhang W, Zhang L, et al. NRAMP1, VDR, HLA-DRB1, and HLA-DQB1 gene polymorphisms in susceptibility to tuberculosis among the Chinese Kazakh population: a case-control study. Biomed Res Int, 2013, 2013:484535.[3]Liu W, Zhang F, Xin ZT, et al. Sequence variations in the MBL gene and their relationship to pulmonary tuberculosis in the Chinese Han population. Int J Tuberc Lung Dis, 2006, 10(10):1098-1103.[4]North RJ, Jung YJ. Immunity to tuberculosis. Annu Rev Immunol, 2004, 22:599-623.[5]Serbina NV, Jia T, Hohl TM, et al. Monocyte-mediated defense against microbial pathogens. Annu Rev Immunol, 2008, 26:421-452.[6]Schoenborn JR, Wilson CB. Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol, 2007, 96:41-101.[7]Redford PS, Boonstra A, Read S, et al. Enhanced protection to Mycobacterium tuberculosis infection in IL-10-deficient mice is accompanied by early and enhanced Th1 responses in the lung. Eur J Immunol, 2010, 40(8):2200-2210.[8]Cooper AM, Mayer-Barber KD, Sher A. Role of innate cytokines in mycobacterial infection. Mucosal Immunol, 2011, 4(3):252-260.[9]Mayer-Barber KD, Barber DL, Shenderov K, et al. Caspase-1 independent IL-1beta production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J Immunol, 2010, 184(7):3326-3330.[10]Guo H, Ingolia NT, Weissman JS, et al. Mammalian micro-RNAs predominantly act to decrease target mRNA levels. Nature, 2010, 466(7308):835-840.[11]Lim LP, Lau NC, Garrett-Engele P, et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005, 433(7027):769-773.[12]Erson AE, Petty EM. MicroRNAs in development and di-sease. Clin Genet, 2008, 74(4):296-306.[13]Chen XM, Splinter PL, O’Hara SP, et al. A cellular micro-RNA, let-7i, regulates Toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J Biol Chem, 2007, 282(39):28929-28938.[14]Zhou R, Hu G, Liu J, et al. NF-kappaB p65-dependent transactivation of miRNA genes following Cryptosporidium parvum infection stimulates epithelial cell immune responses. PLoS Pathog, 2009, 5(12):e1000681.[15]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science, 2007, 316(5824):608-611.[16]Oertli M, Engler DB, Kohler E, et al. MicroRNA-155 is essential for the T cell-mediated control of Helicobacter pylori infection and for the induction of chronic Gastritis and Colitis. J Immunol, 2011, 187(7):3578-3586.[17]Li QJ, Chau J, Ebert PJ, et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell, 2007, 129(1):147-161.[18]Schulte LN, Eulalio A, Mollenkopf HJ, et al. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J, 2011, 30(10):1977-1989.[19]Liu G, Friggeri A, Yang Y, et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci U S A, 2009, 106(37):15819-15824.[20]Berry MP, Graham CM, McNab FW, et al. An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature, 2010, 466(7309):973-977.[21]Maertzdorf J, Repsilber D, Parida SK, et al. Human gene expression profiles of susceptibility and resistance in tuberculosis. Genes Immun, 2011, 12(1):15-22.[22]Sheedy FJ, Palsson-McDermott E, Hennessy EJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol, 2010, 11(2):141-147.[23]Wu Z, Lu H, Sheng J, et al. Inductive microRNA-21 impairs anti-mycobacterial responses by targeting IL-12 and Bcl-2. FEBS Lett, 2012, 586(16):2459-2467.[24]Kumar R, Halder P, Sahu SK, et al. Identification of a novel role of ESAT-6-dependent miR-155 induction during infection of macrophages with Mycobacterium tuberculosis. Cell Micro-biol, 2012, 14(10):1620-1631.[25]Rome S. Are extracellular microRNAs involved in type 2 diabetes and related pathologies? Clin Biochem, 2013, 46(10/11):937-945.[26]Fu Y, Yi Z, Wu X, et al. Circulating microRNAs in patients with active pulmonary tuberculosis. J Clin Microbiol, 2011, 49(12):4246-4251.[27]Yi Z, Fu Y, Ji R, et al. Altered microRNA signatures in sputum of patients with active pulmonary tuberculosis. PLoS One, 2012, 7(8):e43184.[28]Park SY, Lee JH, Ha M, et al. miR-29 miRNAs activate p53 by targeting p85 alpha and CDC42. Nat Struct Mol Biol, 2009, 16(1):23-29.[29]Xiong Y, Fang JH, Yun JP, et al. Effects of microRNA-29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology, 2010, 51(3):836-845.[30]Ma F,Xu S,Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol, 2011, 12(9):861-869.[31]Rajaram MV,Ni B,Morris JD, et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A, 2011, 108(42):17408-17413.[32]Huang HC, Yu HR, Huang LT, et al. miRNA-125b regulates TNF-α production in CD14+ neonatal monocytes via post-transcriptional regulation. J Leukoc Biol, 2012, 92(1):171-182.[33]Liu Y, Wang X, Jiang J, et al. Modulation of T cell cytokine production by miR-144* with elevated expression in patients with pulmonary tuberculosis. Mol Immunol, 2011, 48(9/10):1084-1090.[34]Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol, 2007, 179(8):5082-5089.[35]Thai TH, Calado DP, Casola S, et al. Regulation of the germinal center response by microRNA-155. Science, 2007, 316(5824):604-608.[36]Wang C, Yang S, Sun G, et al. Comparative miRNA expression profiles in individuals with latent and active tuberculosis. PLoS One, 2011, 6(10):e25832.[37]Johnnidis JB, Harris MH, Wheeler RT, et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature, 2008, 451(7182):1125-1129.[38]Armstrong DA, Major JA, Chudyk A, et al. Neutrophil chemoattractant genes KC and MIP-2 are expressed in different cell populations at sites of surgical injury. J Leukoc Biol, 2004, 75(4):641-648.[39]Liu F, Poursine-Laurent J, Wu HY, et al. Interleukin-6 and the granulocyte colony-stimulating factor receptor are major independent regulators of granulopoiesis in vivo but are not required for lineage commitment or terminal differentiation. Blood, 1997, 90(7):2583-2590.[40]Dorhoi A, Iannaccone M, Farinacci M, et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J Clin Invest, 2013, 123(11):4836-4848.[41]Behar SM, Divangahi M, Remold HG. Evasion of innate immunity by Mycobacterium tuberculosis: is death an exit strategy? Nat Rev Microbiol, 2010, 8(9):668-674.[42]Divangahi M, Chen M, Gan H, et al. Mycobacterium tuberculosis evades macrophage defenses by inhibiting plasma membrane repair. Nat Immunol, 2009, 10(8):899-906.[43]Liu Y, Jiang J, Wang X, et al. miR-582-5p is upregulated in patients with active tuberculosis and inhibits apoptosis of mono-cytes by targeting FOXO1. PLoS One, 2013, 8(10):e78381.[44]Monsalve M, Olmos Y. The complex biology of FOXO. Curr Drug Targets, 2011, 12(9):1322-1350.[45]Golub JE, Bur S, Cronin WA, et al. Delayed tuberculosis diag-nosis and tuberculosis transmission. Int J Tuberc Lung Dis, 2006, 10(1):24-30.[46]McNerney R, Maeurer M, Abubakar I, et al. Tuberculosis diag-nostics and biomarkers: needs, challenges, recent advances, and opportunities. J Infect Dis, 2012, 205 Suppl 2:S147-158.[47]Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008, 18(10):997-1006.[48]Zhao H, Zhu L, Jin Y, et al. miR-375 is highly expressed and possibly transactivated by achaete-scute complex homolog 1 in small-cell lung cancer cells. Acta Biochim Biophys Sin (Shanghai), 2012, 44(2):177-182.[49]Du L, Schageman JJ, Irnov, et al. MicroRNA expression distinguishes SCLC from NSCLC lung tumor cells and suggests a possible pathological relationship between SCLCs and NSCLCs. J Exp Clin Cancer Res, 2010, 29:75.[50]Qi Y, Cui L, Ge Y, et al. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary tuberculosis infection. BMC Infect Dis, 2012, 12:384. |
[1] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[2] | Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. |
[3] | Shang Xuetian, Dong Jing, Huang Mailing, Sun Qi, Jia Hongyan, Zhang Lanyue, Liu Qiuyue, Yao Mingxu, Wang Yingchao, Ji Xiuxiu, Du Boping, Xing Aiying, Pan Liping. Transcriptome study on peripheral blood mononuclear cells of latent tuberculosis infection individuals [J]. Chinese Journal of Antituberculosis, 2024, 46(4): 449-460. |
[4] | Bei Cheng, Li Meng, Gao Qian. Research progress on blood transcriptomic biomarkers in the diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(8): 801-807. |
[5] | Wang Hanfei, Zhao Yanlin, Xu Caihong. Research progress of subclinical tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(8): 808-813. |
[6] | Shi Yuting, Dong Jing, Jia Hongyan, Zhu Chuanzhi, Yang Bin, Li Zihui, Sun Qi, Du Boping, Xing Aiying, Zhang Zongde, Pan Liping. The role of miR-99a-5p in the immune regulation of host macrophages infected by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(5): 464-471. |
[7] | Xia Hui, Wang Ruibai, Zhao Yanlin. Differential diagnosis between latent tuberculosis infection and active tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(3): 253-259. |
[8] | Ma Zichun, Shang Yuanyuan, Pang Yu, Li Shanshan. Research progress of chemokines in the diagnosis of tuberculosis [J]. Chinese Journal of Antituberculosis, 2023, 45(3): 305-310. |
[9] | CHEN Meng-meng, DONG Jing, SUN Qi, HUANG Mai-ling, DING Ze-yu, SHI Yu-ting, JIA Hong-yan, DU Bo-ping, WEI Rong-rong, XING Ai-ying, ZHANG Zong-de, PAN Li-ping. Diagnostic performance of differentially expressed miRNA identified by gene chip in discriminating tuberculous meningitis from viral meningitis [J]. Chinese Journal of Antituberculosis, 2022, 44(3): 264-272. |
[10] | Zhu Yinyin, Zhang Hongying. Research progress of non-coding RNA tuberculosis [J]. Chinese Journal of Antituberculosis, 2022, 44(12): 1358-1362. |
[11] | DONG Jing, JIA Hong-yan, SUN Qi, LI Zi-hui, WEI Rong-rong, DU Bo-ping, XING Ai-ying, PAN Li-ping, ZHANG Zong-de. Identification of approriate reference genes for the detection of miRNA in tuberculosis and malignant pleural effusion [J]. Chinese Journal of Antituberculosis, 2021, 43(3): 261-267. |
[12] | WANG Xiu-jun, LIU Qiu-yue, CHEN Xiao-feng, YU Lei, MA Yan, HAN Fen. Study on plasma proteomics of patients with secondary pulmonary tuberculosis based on label-free quantitative technology [J]. Chinese Journal of Antituberculosis, 2021, 43(2): 159-165. |
[13] | GAO Shu-hui,ZHAO Jun-wei. Research progress of exosomal non-coding RNA as potential biomarkers of tuberculosis [J]. Chinese Journal of Antituberculosis, 2020, 42(3): 282-285. |
[14] | Xin-yang WANG,Ying-me FU,Yan-lin ZHAO,Feng-min ZHANG. Research progress of Mycobacterium tuberculosis exosome [J]. Chinese Journal of Antituberculosis, 2018, 40(10): 1129-1133. |
[15] | Clinic Society of Chinese Antituberculosis Association. Annual report on clinical diagnosis and treatment progress of tuberculosis (2013) (Part 1 clinical diagnosis) [J]. Chinese Journal of Antituberculosis, 2014, 36(8): 714-740. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||