Chinese Journal of Antituberculosis ›› 2023, Vol. 45 ›› Issue (5): 464-471.doi: 10.19982/j.issn.1000-6621.20220532
• Original Articles • Previous Articles Next Articles
Shi Yuting1, Dong Jing1, Jia Hongyan1, Zhu Chuanzhi1, Yang Bin2, Li Zihui1, Sun Qi1, Du Boping1, Xing Aiying1, Zhang Zongde1, Pan Liping1()
Received:
2023-01-15
Online:
2023-05-10
Published:
2023-04-25
Contact:
Pan Liping
E-mail:panliping2006@163.com
Supported by:
CLC Number:
Shi Yuting, Dong Jing, Jia Hongyan, Zhu Chuanzhi, Yang Bin, Li Zihui, Sun Qi, Du Boping, Xing Aiying, Zhang Zongde, Pan Liping. The role of miR-99a-5p in the immune regulation of host macrophages infected by Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(5): 464-471. doi: 10.19982/j.issn.1000-6621.20220532
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20220532
miRNA名称 | Log2FC | P值 | miRNA名称 | Log2FC | P值 |
---|---|---|---|---|---|
has-miR-216a-5p | 4.861 | <0.001 | has-miR-217 | 1.843 | 0.031 |
has-miR-31-5p | 2.998 | 0.000 | has-miR-301b-5p | 3.082 | 0.045 |
has-miR-409-3p | Inf | <0.001 | has-miR-3190-3p | Inf | 0.031 |
has-miR-125b-5p | 1.017 | 0.007 | has-miR-33a-5p | 1.210 | 0.047 |
has-miR-127-3p | 2.795 | 0.006 | has-miR-411-5p | 2.275 | 0.045 |
has-miR-1307-5p | 2.335 | 0.012 | has-miR-4518 | Inf | 0.032 |
has-miR-15a-3p | 1.889 | 0.048 | has-miR-4755-5p | Inf | 0.026 |
has-miR-190a-3p | 2.590 | 0.025 | has-miR-99a-5p | 2.191 | 0.021 |
[1] |
Wang Z, Xu H, Wei Z, et al. The role of non-coding RNA on macrophage modification in tuberculosis infection. Microb Pathog, 2020, 149:104592. doi:10.1016/j.micpath.2020.104592.
doi: 10.1016/j.micpath.2020.104592 URL |
[2] |
Wang M, Mao C, Ouyang L, et al. Long noncoding RNA LINC 00336 inhibits ferroptosis in lung cancer by functioning as a competing endogenous RNA. Cell Death Differ, 2019, 26(11):2329-2343. doi:10.1038/s41418-019-0304-y.
doi: 10.1038/s41418-019-0304-y pmid: 30787392 |
[3] |
Sun W, Zhang X, He X, et al. Long non-coding RNA SNHG 16 silencing inhibits proliferation and inflammation in Mycobacterium tuberculosis-infected macrophages by targeting miR-140-5p expression. Infect Genet Evol, 2022, 103:105325. doi:10.1016/j.meegid.2022.105325.
doi: 10.1016/j.meegid.2022.105325 URL |
[4] |
Zhang Y, Luo D, Tang MI, et al. Circ-WDR27 regulates mycobacterial vitality and secretion of inflammatory cytokines in Mycobacterium tuberculosis-infected macrophages via the miR-370-3p/FSTL 1 signal network. J Biosci, 2022, 47:28. doi:10.1007/s12038-022-00265-8.
doi: 10.1007/s12038-022-00265-8 |
[5] |
Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet, 2010, 11(9):597-610. doi:10.1038/nrg2843.
doi: 10.1038/nrg2843 pmid: 20661255 |
[6] |
Lanford RE, Hildebrandt-Eriksen ES, Petri A, et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 2010, 327(5962):198-201. doi:10.1126/science.1178178.
doi: 10.1126/science.1178178 pmid: 19965718 |
[7] |
Takeshita F, Patrawala L, Osaki M, et al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol Ther, 2010, 18(1):181-187. doi:10.1038/mt.2009.207.
doi: 10.1038/mt.2009.207 pmid: 19738602 |
[8] |
Kotsinas A, Sigala F, Garbis SD, et al. MicroRNAs Determining Inflammation as Novel Biomarkers and Potential Therapeutic Targets. Curr Med Chem, 2015, 22(22):2666-2679. doi:10.2174/0929867322666150716113304.
doi: 10.2174/0929867322666150716113304 pmid: 26180004 |
[9] |
Fu X, Zeng L, Liu Z, et al. MicroRNA-206 regulates the secretion of inflammatory cytokines and MMP 9 expression by targeting TIMP3 in Mycobacterium tuberculosis-infected THP-1 human macrophages. Biochem Biophys Res Commun, 2016, 477(2):167-173. doi:10.1016/j.bbrc.2016.06.038.
doi: 10.1016/j.bbrc.2016.06.038 URL |
[10] |
Lou J, Wang Y, Zhang Z, et al. MiR-20b inhibits Mycobacterium tuberculosis induced inflammation in the lung of mice through targeting NLRP3. Exp Cell Res, 2017, 358(2):120-128. doi:10.1016/j.yexcr.2017.06.007.
doi: 10.1016/j.yexcr.2017.06.007 URL |
[11] |
Gu X, Gao Y, Mu DG, et al. MiR-23a-5p modulates mycobacterial survival and autophagy during Mycobacterium tuberculosis infection through TLR2/MyD88/NF-κB pathway by targeting TLR2. Exp Cell Res, 2017, 354(2):71-77. doi:10.1016/j.yexcr.2017.03.039.
doi: 10.1016/j.yexcr.2017.03.039 URL |
[12] |
Liu F, Chen J, Wang P, et al. MicroRNA-27a controls the intracellular survival of Mycobacterium tuberculosis by regulating calcium-associated autophagy. Nat Commun, 2018, 9(1):4295. doi:10.1038/s41467-018-06836-4.
doi: 10.1038/s41467-018-06836-4 |
[13] |
Huang J, Jiao J, Xu W, et al. MiR-155 is upregulated in patients with active tuberculosis and inhibits apoptosis of monocytes by targeting FOXO3. Mol Med Rep, 2015, 12(5):7102-7108. doi:10.3892/mmr.2015.4250.
doi: 10.3892/mmr.2015.4250 pmid: 26324048 |
[14] |
Liu Y, Wang R, Jiang J, et al. miR-223 is upregulated in monocytes from patients with tuberculosis and regulates function of monocyte-derived macrophages. Mol Immunol, 2015, 67(2 Pt B):475-481. doi:10.1016/j.molimm.2015.08.006.
doi: 10.1016/j.molimm.2015.08.006 pmid: 26296289 |
[15] |
Qu Y, Ding S, Ma Z, et al. MiR-129-3p favors intracellular BCG survival in RAW264.7 cells by inhibiting autophagy via Atg4b. Cell Immunol, 2019, 337:22-32. doi:10.1016/j.cellimm.2019.01.004.
doi: S0008-8749(18)30454-4 pmid: 30782398 |
[16] |
Ouimet M, Koster S, Sakowski E, et al. Mycobacterium tuberculosis induces the miR-33 locus to reprogram autophagy and host lipid metabolism. Nat Immunol, 2016, 17(6):677-686. doi:10.1038/ni.3434.
doi: 10.1038/ni.3434 |
[17] |
Zhao Z, Hao J, Li X, et al. MiR-21-5p regulates mycobacterial survival and inflammatory responses by targeting Bcl-2 and TLR4 in Mycobacterium tuberculosis-infected macrophages. FEBS Lett, 2019, 593(12):1326-1335. doi:10.1002/1873-3468.13438.
doi: 10.1002/1873-3468.13438 URL |
[18] |
Cui J, Li Z, Cui K, et al. MicroRNA-20a-3p regulates the host immune response to facilitate the Mycobacterium tuberculosis infection by targeting IKKβ/NF-κB pathway. Int Immuno-pharmacol, 2021, 91:107286. doi:10.1016/j.intimp.2020.107286.
doi: 10.1016/j.intimp.2020.107286 |
[19] |
Lyu L, Zhang X, Li C, et al. Small RNA Profiles of Serum Exosomes Derived From Individuals With Latent and Active Tuberculosis. Front Microbiol, 2019, 10:1174. doi:10.3389/fmicb.2019.01174.
doi: 10.3389/fmicb.2019.01174 pmid: 31191492 |
[20] |
Wang C, Yang S, Liu CM, et al. Screening and identification of four serum miRNAs as novel potential biomarkers for cured pulmonary tuberculosis. Tuberculosis (Edinb), 2018, 108:26-34. doi:10.1016/j.tube.2017.08.010.
doi: 10.1016/j.tube.2017.08.010 URL |
[21] |
Fenton MJ, Vermeulen MW. Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect Immun, 1996, 64(3):683-690. doi:10.1128/iai.64.3.683-690.1996.
doi: 10.1128/iai.64.3.683-690.1996 pmid: 8641767 |
[22] |
Furci L, Schena E, Miotto P, et al. Alteration of human macrophages microRNA expression profile upon infection with Mycobacterium tuberculosis. Int J Mycobacteriol, 2013, 2(3):128-134. doi:10.1016/j.ijmyco.2013.04.006.
doi: 10.1016/j.ijmyco.2013.04.006 URL |
[23] |
Graff JW, Dickson AM, Clay G, et al. Identifying functional microRNAs in macrophages with polarized phenotypes. J Biol Chem, 2012, 287(26):21816-21825. doi:10.1074/jbc.M111.327031.
doi: 10.1074/jbc.M111.327031 pmid: 22549785 |
[24] |
Zhang G, Liu X, Wang W, et al. Down-regulation of miR-20a-5p triggers cell apoptosis to facilitate mycobacterial clea-rance through targeting JNK 2 in human macrophages. Cell Cycle, 2016, 15(18):2527-2538. doi:10.1080/15384101.2016.1215386.
doi: 10.1080/15384101.2016.1215386 URL |
[25] |
Li X, Huang S, Yu T, et al. MiR-140 modulates the inflammatory responses of Mycobacterium tuberculosis-infected macrophages by targeting TRAF6. J Cell Mol Med, 2019, 23(8):5642-5653. doi:10.1111/jcmm.14472.
doi: 10.1111/jcmm.14472 URL |
[26] |
Zhang ZM, Zhang AR, Xu M, et al. TLR-4/miRNA-32-5p/FSTL 1 signaling regulates mycobacterial survival and inflammatory responses in Mycobacterium tuberculosis-infected macrophages. Exp Cell Res, 2017, 352(2):313-321. doi:10.1016/j.yexcr.2017.02.025.
doi: 10.1016/j.yexcr.2017.02.025 URL |
[27] |
Rajaram MV, Ni B, Morris JD, et al. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proc Natl Acad Sci U S A, 2011, 108(42):17408-17413. doi:10.1073/pnas.1112660108.
doi: 10.1073/pnas.1112660108 URL |
[28] |
Ma F, Xu S, Liu X, et al. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ. Nat Immunol, 2011, 12(9):861-869. doi:10.1038/ni.2073.
doi: 10.1038/ni.2073 pmid: 21785411 |
[29] |
Tao Z, Zhao H, Wang R, et al. Neuroprotective effect of microRNA-99a against focal cerebral ischemia-reperfusion injury in mice. J Neurol Sci, 2015, 355(1/2):113-119. doi:10.1016/j.jns.2015.05.036.
doi: 10.1016/j.jns.2015.05.036 URL |
[30] |
Huang HG, Luo X, Wu S, et al. MiR-99a Inhibits Cell Proliferation and Tumorigenesis through Targeting mTOR in Human Anaplastic Thyroid Cancer. Asian Pac J Cancer Prev, 2015, 16(12):4937-4944. doi:10.7314/apjcp.2015.16.12.4937.
doi: 10.7314/apjcp.2015.16.12.4937 URL |
[31] |
Lin KY, Ye H, Han BW, et al. Genome-wide screen identified let-7c/miR-99a/miR-125b regulating tumor progression and stem-like properties in cholangiocarcinoma. Oncogene, 2016, 35(26):3376-3386. doi:10.1038/onc.2015.396.
doi: 10.1038/onc.2015.396 pmid: 26455324 |
[32] |
Bao MH, Li JM, Luo HQ, et al. NF-κB-Regulated miR-99a Modulates Endothelial Cell Inflammation. Mediators Inflamm, 2016, 2016:5308170. doi:10.1155/2016/5308170.
doi: 10.1155/2016/5308170 |
[33] |
Jaiswal A, Reddy SS, Maurya M, et al. MicroRNA-99a mimics inhibit M1 macrophage phenotype and adipose tissue inflammation by targeting TNFα. Cell Mol Immunol, 2019, 16(5):495-507. doi:10.1038/s41423-018-0038-7.
doi: 10.1038/s41423-018-0038-7 pmid: 29849090 |
[34] |
Palucci I, Delogu G. Host Directed Therapies for Tuberculosis: Futures Strategies for an Ancient Disease. Chemotherapy, 2018, 63(3):172-180. doi:10.1159/000490478.
doi: 10.1159/000490478 pmid: 30032143 |
[35] |
Sabir N, Hussain T, Shah SZA, et al. miRNAs in Tuberculosis: New Avenues for Diagnosis and Host-Directed Therapy. Front Microbiol, 2018, 9:602. doi:10.3389/fmicb.2018.00602.
doi: 10.3389/fmicb.2018.00602 pmid: 29651283 |
[36] |
Niu NK, Yin JJ, Yang YX, et al. Novel targeting of PEGylated liposomes for codelivery of TGF-β1 siRNA and four antitubercular drugs to human macrophages for the treatment of mycobacterial infection: a quantitative proteomic study. Drug Des Devel Ther, 2015, 9:4441-4470. doi:10.2147/DDDT.S79369.
doi: 10.2147/DDDT.S79369 |
[37] |
Moore LB, Sawyer AJ, Saucier-Sawyer J, et al. Nanoparticle delivery of miR-223 to attenuate macrophage fusion. Biomaterials, 2016, 89:127-135. doi:10.1016/j.biomaterials.2016.02.036.
doi: 10.1016/j.biomaterials.2016.02.036 pmid: 26967647 |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||