Chinese Journal of Antituberculosis ›› 2015, Vol. 37 ›› Issue (2): 189-193.doi: 10.3969/j.issn.1000-6621.2015.02.014
Previous Articles Next Articles
WU Xiao-e,CHEN Jing,SONG Shu-xia
Received:
2014-07-09
Online:
2015-02-10
Published:
2015-03-21
Contact:
SONG Shu-xia
E-mail:prosongsx@aliyun.com
WU Xiao-e,CHEN Jing,SONG Shu-xia. Innate immune recognition of Mycobacterium tuberculosis[J]. Chinese Journal of Antituberculosis, 2015, 37(2): 189-193. doi: 10.3969/j.issn.1000-6621.2015.02.014
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.3969/j.issn.1000-6621.2015.02.014
[1]World Health Organization. Global tuberculosis control-epidemiology, strategy, financing. Geneva: World Health Organization,2013.[2]Akira S, Takeda K, Kaisho T. Toll-like receptors:critical proteins linking innate and acquired immunity. Nat Immunol, 2001, 2(8):675-680.[3]Underhill DM, Ozinsky A, Smith KD, et al.Toll-like receptor-2 ediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci U S A, 1999,96(25):14459-14463.[4]Negishi H, Yanai H, Nakajima A, et al. Cross-interference of RLR and TLR signaling pathways modulates antibacterial T cell responses. Nat Immunol, 2012, 13(7):659-666.[5]Kleinnijenhuis J, Oosting M, Joosten LA,et al. Innate immune recognition of Mycobacterium tuberculosis. Clin Dev Immunol, 2011,2011:405310.[6]Carvalho NB, Oliveira FS, Duraes FV, et al. Toll-like receptor 9 is required for full host resistance to Mycobacterium avium infection but plays no role in induction of Th1 responses. Infect Immun, 2011,79(4):1638-1646.[7]Shi S, Nathan C, Schnappinger D, et al. MyD88 primes macrophages for full-scale activation by interferon-gamma yet mediates few responses to Mycobacterium tuberculosis. J Exp Med,2003, 198(7): 987-997.[8]Mortaz E, Adcock IM, Tabarsi P, et al. Interaction of pattern recognition receptors with Mycobacterium tuberculosis. J Clin Immunol, 2014. [Epub ahead of print][9]Jiang C, Lin X. Regulation of NF-κB by the CARD proteins. Immunol Rev, 2012, 246(1):141-153.[10]Gordon S. Alternative activation of macrophages. Nat Rev Immunol, 2003, 3(1): 23-35.[11]Nigou J, Zelle-Rieser C, Gilleron M, et al. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J Immunol, 2001, 166(12): 7477-7485.[12]Ehlers S. DC-SIGN and mannosylated surface structures of Mycobacterium tuberculosis: a deceptive liaison. Eur J Cell Biol, 2010,89(1):95-101.[13]Vergne I, Chua J,Deretic V. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J Exp Med, 2003, 198(4): 653-659.[14]Hmama Z, Sendide K, Talal A,et al. Quantitative analysis of phagolysosome fusion in intact cells: inhibition by mycobacterial lipoarabinomannan and rescue by an 1 alpha,25-dihydroxyvitamin D3- phosphoinositide 3-kinase pathway. J Cell Sci, 2004,117(Pt 10): 2131-2140.[15]Sweet L, Singh PP, Azad AK, et al. Mannose receptor-dependent delay in phagosome maturation by Mycobacterium avium glycopeptidolipids. Infect Immun, 2010,78(1):518-526.[16]Torrelles JB, Schlesinger LS. Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis(Edinb), 2010, 90(2): 84-93.[17]Reed MB, Domenech P, Manca C, et al. A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 2004, 431(7004): 84-87.[18]Reed MB, Gagneux S, Deriemer K,et al. The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. J Bacteriol, 2007,189(7):2583-2589.[19]Ordway D, Henao-Tamayo M, Harton M, et al. The hypervirulent Mycobacterium tuberculosis strain HN878 induces a potent TH1 response followed by rapid down-regulation. J Immunol, 2007,179(1):522-531.[20]Hernández-Pando R, Marquina-Castillo B, Barrios-Payán J, et al. Use of mouse models to study the variability in virulence associated with specific genotypic lineages of Mycobacterium tuberculosis. Infect Genet Evol, 2012,12(4):725-731.[21]姚楠, 张万江. 结核分枝杆菌的休眠机制研究进展. 中国防痨杂志, 2011, 33(11): 766-768.[22]Appelmelk BJ, den Dunnen J, Driessen NN, et al. The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium-host interaction. Cell Microbiol, 2008, 10(4): 930-944.[23]Geijtenbeek TB, Torensma R, van Vliet SJ, et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell, 2000, 100(5): 575-585.[24]Geijtenbeek TB, Krooshoop DJ, Bleijs DA, et al. DC-SIGN- ICAM-2 interaction mediates dendritic cell trafficking. Nat Immunol, 2000,1(4): 353-357.[25]Geurtsen J, Chedammi S, Mesters J, et al. Identification of mycobacterial alpha-glucan as a novel ligand for DC-SIGN: involvement of mycobacterial capsular polysaccharides in host immune modulation. J Immunol,2009,183(8): 5221-5231.[26]Gringhuis SI, den Dunnen J, Litjens M, et al. C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappaB. Immunity,2007, 26(5):605-616.[27]Dinadayala P, Lemassu A, Granovski P, et al. Revisiting the structure of the anti-neoplastic glucans of Mycobacterium bovis Bacille Calmette-Guérin: Structural analysis of the extracellular and boiling water extract-derived glucans of the vaccine substrains. J Biol Chem, 2004, 279(13):12369-12378.[28]Yadav M, Schorey JS. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood, 2006, 108(9): 3168-3175.[29]Gantner BN, Simmons RM, Canavera SJ, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med, 2003,197(9): 1107-1117.[30]Brown GD, Herre J, Williams DL, et al. Dectin-1 mediates the biological effects of beta-glucans. J Exp Med,2003,197(9):1119-1124.[31]van de Veerdonk FL, Teirlinck AC, Kleinnijenhuis J, et al. Mycobacterium tuberculosis induces IL-17A responses through TLR4 and dectin-1 and is critically dependent on endogenous IL-1. J Leukoc Biol, 2010, 88(2): 227-232.[32]Hill AV. Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet, 2006,40: 469-486.[33]Bellamy R. Genome-wide approaches to identifying genetic factors in host susceptibility to tuberculosis. Microbes Infect, 2006,8(4):1119-1123.[34]Aderem A, Ulevitch RJ. Toll-like receptors in the induction of the innate immune response. Nature, 2000, 406(6797): 782-787.[35]Dalgic N, Tekin D, Kayaalti Z, et al. Arg753Gln polymorphism of the human Toll-like receptor 2 gene from infection to disease in pediatric tuberculosis. Hum Immunol, 2011,72(5):440-445.[36]Xue Y, Zhao ZQ, Wang HJ, et al. Toll-like receptors 2 and 4 gene polymorphisms in a southeastern Chinese population with tuberculosis. Int J Immunogenet, 2010, 37(2): 135-138.[37]Biswas D, Gupta SK, Sindhwani G, et al. TLR2 polymorphisms, Arg753Gln and Arg677Trp, are not associated with increased burden of tuberculosis in Indian patients. BMC Res Notes, 2009, 2: 162.[38]Ben-Ali M, Barbouche MR, Bousnina S, et al. Toll-like receptor 2 Arg677Trp polymorphism is associated with susceptibility to tuberculosis in Tunisian patients. Clin Diagn Lab Immunol,2004,11(3): 625-626.[39]Malhotra D, Relhan V, Reddy BS,et al. TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum Genet, 2005,116(5): 413-415.[40]Thuong NT, Hawn TR, Thwaites GE, et al. A polymorphism in human TLR2 is associated with increased susceptibility to tuberculous meningitis. Genes Immun, 2007,8(5): 422-428.[41]Caws M, Thwaites G, Dunstan S, et al. The influence of host and bacterial genotype on the development of disseminated di-sease with Mycobacterium tuberculosis. PLoS Pathog, 2008, 4(3): e1000034.[42]车南颖, 姜世闻, 高铁杰, 等. 中国汉族人群Toll样受体2基因多态性与肺结核易感性之间关系. 中国防痨杂志, 2011, 33(4): 204-208.[43]Yim JJ, Lee HW, Lee HS, et al. The association between microsatellite polymorphisms in intron Ⅱ of the human Toll-like receptor 2 gene and tuberculosis among Koreans. Genes Immun, 2006, 7(2): 150-155.[44]Yim JJ, Kim HJ, Kwon OJ, et al. Association between microsatellite polymorphisms in intron Ⅱ of the human Toll-like receptor 2 gene and nontuberculous mycobacterial lung disease in a Korean population. Hum Immunol, 2008, 69(9): 572-576.[45]Chen YC, Hsiao CC, Chen CJ, et al. Toll-like receptor 2 gene polymorphisms, pulmonary tuberculosis, and natural killer cell counts. BMC Med Genet,2010,11: 17.[46]Velez DR, Wejse C, Stryjewski ME, et al. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet,2010, 127(1): 65-73.[47]Johnson CM, Lyle EA, Omueti KO, et al. Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol, 2007, 178(12): 7520-7524.[48]Ma X, Liu Y, Gowen BB, et al. Full-exon resequencing reveals toll-like receptor variants contribute to human susceptibility to tuberculosis disease. PLoS One, 2007, 2(12): e1318.[49]Shey MS, Randhawa AK, Bowmaker M, et al. Single nucleotide polymorphisms in toll-like receptor 6 are associated with altered lipopeptide- and mycobacteria-induced interleukin-6 secretion. Genes Immun, 2010, 11(7): 561-572.[50]Pulido I, Leal M, Genebat M, et al. The TLR4 ASP299GLY polymorphism is a risk factor for active tuberculosis in Caucasian HIV-infected patients. Curr HIV Res,2010, 8(3): 253-258.[51]Khor CC, Chapman SJ, Vannberg FO, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet,2007,39(4): 523-528.[52]Nejentsev S, Thye T, Szeszko JS,et al. Analysis of association of the TIRAP (MAL) S180L variant and tuberculosis in three populations. Nat Genet,2008, 40(3): 261-262.[53]Barreiro LB, Neyrolles O, Babb CL,et al. Promoter variation in the DC-SIGN-encoding gene CD209 is associated with tuberculosis. PLoS Med,2006,3(2): e20.[54]Ben-Ali M, Barreiro LB, Chabbou A, et al. Promoter and neck region length variation of DC-SIGN is not associated with susceptibility to tuberculosis in Tunisian patients. Hum Immunol,2007, 68(11): 908-912.[55]Vannberg FO, Chapman SJ, Khor CC, et al. CD209 genetic polymorphism and tuberculosis disease. PLoS One, 2008, 3(1): e1388. |
[1] | Hu Yifan, Du Boping, Wu Yadong, Zhu Chuanzhi, Zhang Lanyue, Jia Hongyan, Sun Qi, Pan Liping, Zhang Zongde, Li Zihui. Experimental study on the role of Mce4C in the uptake and utilization of cholesterol by Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 444-453. |
[2] | Sheng Jie, Hong Kaifeng, Mierzhati Aisha, Tang Wei, Dilixiati Abulizi. Study on the mechanism of IL-22 and p38 MAPK signaling pathways in inhibiting bone destruction in bone and joint tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 454-459. |
[3] | Hao Mingxiao, Mi Jie, Xu Zongyi. Effectiveness of a continuity of care model in patients with tuberculous meningitis [J]. Chinese Journal of Antituberculosis, 2025, 47(4): 477-481. |
[4] | Huang Misun, Wu Yaning, Li Guilian, Liu Haican. Research advances of Mycobacterium tuberculosis enrichment technology [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 369-373. |
[5] | Zhang Chao, Yu Xia, Huang Hairong, Liu Wei, Liu Tao. Evaluation of the in vitro antimicrobial effects of sevoflurane on Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 158-163. |
[6] | Liu Ruihua, Sarina , Wang Furong. Interaction between lung cancer and tuberculosis in disease development and progression [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 102-111. |
[7] | Chen Jifei, Huang Lihua, Luo Lanbo, Sui Wenxian, Pang Yu, Liu Aimei. Evaluation the efficacy of tongue swab-based PCR fluorescence probe method for pulmonary tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 51-60. |
[8] | Lu Hailin, Wang Wenfei, Tao Wenhui, Lin Peicong, Chen Xinchun, Deng Guofang, Xie Shuixiang. Oleic acid upregulates the expression of perilipin 2 enhancing macrophage clearance of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2025, 47(1): 72-76. |
[9] | Wang Yilin, Wu Xiao, Pang Yu, Li Shanshan. Immunomodulatory effect of orelabrutinib in host macrophages infected with mycobacterium [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1063-1068. |
[10] | Palidanguli Abudureheman, Wang Senlu, Gulina Badeerhan, Wang Le, Zulikatiayi Abudula, Wang Xinqi, Maiwulajiang Yimamu, Wang Xijiang. Distribution of Mycobacterium tuberculosis genotypes in Kashgar region and their association with clinical characteristics of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1077-1082. |
[11] | Xu Chunhua, Zhu Shiyu, Hu Yi, Yi Kehua, Song Canlei, Wang Zichun, Wu Yong, Wang Qing, Yang Qianru, Shen Xin. Analysis of screening effect of recombinant Mycobacterium tuberculosis fusion protein in screening Mycobacterium tuberculosis infection in close contacts of pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 897-902. |
[12] | Zhang Lanyue, Wang Yingchao, Liu Weiyi, Shang Xuetian, Jia Hongyan, Zhu Chuanzhi, Zhang Zongde, Pan Liping. Study on the effect of thiol acetyltransferase mshD on the growth and stress response of Mycobacterium tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 935-941. |
[13] | Yu Lan, Chen Shuangshuang, Wang Nenhan, Tian Lili, Zhao Yanfeng, Fan Ruifang, Liu Haican, Li Chuanyou, Dai Xiaowei. Consistency between phenotypic resistance to fluoroquinolones and genetic mutations in rifampicin resistant Mycobacterium tuberculosis strains [J]. Chinese Journal of Antituberculosis, 2024, 46(8): 942-950. |
[14] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[15] | Zhang Muli, Sun Zhaogang, Cao Tingming, Xie Zhongyao. The value of three proteins in diagnosing Mycobacterium tuberculosis infection [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 808-814. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||