Email Alert | RSS    帮助

中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (8): 1044-1052.doi: 10.19982/j.issn.1000-6621.20250047

• 论著 • 上一篇    下一篇

基于纵向胸部CT的影像组学深度学习预测肺结核患者疗效的研究

阿布都热苏力·吐尔孙1,2, 阿布都克尤木江·阿布力孜1,2, 帕提曼·买买提1, 黄陈翠3, 沈玲燕3, 马依迪丽·尼加提2,4()   

  1. 1新疆喀什地区第一人民医院影像中心,喀什844000
    2新疆人工智能影像辅助诊断重点实验室,喀什844000
    3杭州深睿技术有限公司研发中心研究合作部,杭州311101
    4新疆医科大学第四附属医院影像中心,乌鲁木齐830000
  • 收稿日期:2025-02-07 出版日期:2025-08-10 发布日期:2025-08-01
  • 通信作者: 马依迪丽·尼加提,Email: mydl0911@163.com
  • 基金资助:
    国家自然科学基金(82360359);喀什地区科技计划(2022017);第二批“天山英才”-青年托举人才项目(2023TSYCQNTJ0009);自治区卫生健康青年医学科技人才专项科研项目(WJWY-202304);结核病诊断技术研发与检测体系部署(2024B0202010005);“产学研医”一体化建设推动公立医院高质量发展(KS2023012)

Predicting pulmonary tuberculosis treatment outcomes using longitudinal chest CT radiomics and deep learning

Abuduresuli Tu’ersun1,2, Abudukeyoumujiang Abulizi1,2, Patiman Maimaiti1, Huang Chencui3, Shen Lingyan3, Mayidili Nijiati2,4()   

  1. 1Imaging Center, The First People’s Hospital of Kashgar Region, Kashgar 844000, China
    2Xinjiang Key Laboratory of Artificial Intelligence Assisted Medical Imaging Diagnosis, Kashgar 844000, China
    3Research Collaboration Department, Hangzhou Deepwise and League of PhD Technology Co., Ltd., Hangzhou 311101, China
    4Imaging Center, Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi 830000, China
  • Received:2025-02-07 Online:2025-08-10 Published:2025-08-01
  • Contact: Mayidili Nijiati, Email: mydl0911@163.com
  • Supported by:
    National Natural Science Foundation of China(82360359);Kashi Regional Science and Technology Plan(2022017);The Second Batch of “Tianshan Talents”-Youth Lifting Talents Project(2023TSYCQNTJ0009);The Autonomous Region Health and Medical Youth Scientific Talent Special Research Project(WJWY-202304);Development of Tuberculosis Diagnostic Technologies and Deployment of Detection Systems(2024B0202010005);The Integrated Construction of “Industry-Academia-Research-Medicine” Promotes High-Quality Development of Public Hospitals(KS2023012)

摘要:

目的: 探索利用多期胸部CT扫描的深度学习模型,预测肺结核药物治疗效果。方法: 收集2020年1月至2024年1月在新疆喀什地区第一人民医院住院接受治疗的279例肺结核患者的多时序胸部CT影像数据,包括治疗前CT和治疗后CT。提取3386个影像组学特征,构建包括基于治疗前、治疗后、结合治疗前后的胸部CT影像组学模型、基于治疗后与治疗前影像特征变化、基于治疗前后的深度学习ResNet18模型等5种预测模型。模型性能通过受试者工作特征曲线下面积(AUC)等指标进行评估,并采用SHAP和Grad-CAM技术进行模型解释和可视化。结果: 结合治疗前和治疗后CT数据的模型,在训练集和测试集上分别取得了0.845和0.770的AUC。深度学习模型在训练集和验证集上的AUC分别达到0.883和0.858。结论: 基于纵向胸部CT影像的深度学习模型在肺结核疗效预测中展现出良好的性能,能够为个性化治疗和资源优化提供支持。

关键词: 结核, 肺, 治疗结果, 预测, 人工智能, 放射摄影术

Abstract:

Objective: To develop an effective imaging-based prediction tool for reducing overmedication in pulmonary tuberculosis patients. Methods: We collected longitudinal chest CT imaging data from 279 pulmonary tuberculosis patients who received treatment at the First People’s Hospital of Kashgar between January 2020 and January 2024. The dataset included both pre-treatment and post-treatment CT scans. A total of 3386 radiomic features were extracted to construct five distinct predictive models: (1) a pre-treatment CT-based model, (2) a post-treatment CT-based model, (3) a combined pre- and post-treatment CT radiomics model, (4) a delta radiomics model based on temporal changes in imaging features between pre- and post-treatment scans, (5) a deep learning model utilizing ResNet18 architecture incorporating both pre- and post-treatment CT images. Model performance was evaluated using metrics including the area under the receiver operating characteristic curve (AUC). Additionally, SHapley Additive exPlanations (SHAP) and Gradient-weighted Class Activation Mapping (Grad-CAM) techniques were employed for model interpretation and visualization. Results: The combined model utilizing both pre- and post-treatment CT data achieved AUCs of 0.845 and 0.770 in the training and test sets, respectively. The deep learning model demonstrated superior performance with AUCs of 0.883 and 0.858 in the training and validation sets, respectively. Conclusion: The deep learning model based on longitudinal chest CT imaging demonstrated robust performance in predicting tuberculosis treatment outcomes, offering valuable support for personalized treatment strategies and resource optimization.

Key words: Tuberculosis, pulmonary, Treatment outcome, Prediction, Artificial intelligence, Radiography

中图分类号: