[1] |
Chen Y, Chen W, Cheng Z, et al. Global burden of HIV-negative multidrug- and extensively drug-resistant tuberculosis based on Global Burden of Disease Study 2021. Sci One Health, 2024, 3: 100072. doi:10.1016/j.soh.2024.100072.
|
[2] |
Solans BP, Béranger A, Radtke K, et al. Effectiveness and Pharmacokinetic Exposures of First-Line Drugs Used to Treat Drug-Susceptible Tuberculosis in Children: A Systematic Review and Meta-Analysis. Clin Infect Dis, 2023, 76(9): 1658-70 fc. doi:10.1093/cid/ciac973.
pmid: 36609692
|
[3] |
Hussain OA, Junejo KN. Predicting treatment outcome of drug-susceptible tuberculosis patients using machine-learning models. Inform Health Soc Care, 2019, 44(2): 135-151. doi:10.1080/17538157.2018.1433676.
pmid: 29461901
|
[4] |
Abdelbary BE, Garcia-Viveros M, Ramirez-Oropesa H, et al. Predicting treatment failure, death and drug resistance using a computed risk score among newly diagnosed TB patients in Tamaulipas, Mexico. Epidemiol Infect, 2017, 145(14): 3020-3034. doi:10.1017/S0950268817001911.
pmid: 28903800
|
[5] |
Sharma MK, Stobart M, Akochy PM, et al. Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data. Int J Mol Sci, 2024, 25(11): 6245. doi:10.3390/ijms25116245.
|
[6] |
Zhang K, Liu X, Shen J, et al. Clinically Applicable AI System for Accurate Diagnosis, Quantitative Measurements, and Prognosis of COVID-19 Pneumonia Using Computed Tomography. Cell, 2020, 181(6): 1423-1433.e11. doi:10.1016/j.cell.2020.04.045.
pmid: 32416069
|
[7] |
Chen RY, Dodd LE, Lee M, et al. PET/CT imaging correlates with treatment outcome in patients with multidrug-resistant tuberculosis. Sci Transl Med, 2014, 6(265): 265ra166. doi:10.1126/scitranslmed.3009501.
|
[8] |
曹振东, 李磊. 补中益气汤辅助治疗肺结核患者的效果及不良反应评价. 中国防痨杂志, 2024, 46(S1): 70-72.
|
[9] |
中华人民共和国卫生部疾病预防控制局, 中华人民共和国卫生部医政司, 中国疾病预防控制中心. 中国结核病防治规划实施工作指南(2008年版). 北京: 中国协和医科大学出版社, 2009.
|
[10] |
国家感染性疾病临床医学研究中心/深圳市第三人民医院,《中国防痨杂志》编辑委员会. 肺结核活动性判断规范及临床应用专家共识. 中国防痨杂志, 2020, 42(4): 301-307. doi:10.3969/j.issn.1000-6621.2020.04.001.
|
[11] |
王昌浩, 李静. 推行结核病防治服务新体系前后肺结核病诊疗规范性分析. 疾病预防控制通报, 2018, 33(1): 40-42. doi:10.13215/j.cnki.jbyfkztb.1710017.
|
[12] |
Han X, Sun J, Gao Y, et al. A nomogram for predicting unfavorable outcomes of antituberculosis treatment among individuals with AIDS combined with pulmonary tuberculosis in China. Front Immunol, 2025, 16: 1594107. doi:10.3389/fimmu.2025.1594107.
|
[13] |
Nijiati M, Guo L, Tuersun A, et al. Deep learning on longitudinal CT scans: automated prediction of treatment outcomes in hospitalized tuberculosis patients. iScience, 2023, 26(11): 108326. doi:10.1016/j.isci.2023.108326.
|
[14] |
Shen E, Wang Z, Lin T, et al. DRFNet: a deep radiomic fusion network for nAMD/PCV differentiation in OCT images. Phys Med Biol, 2024, 69(7). doi:10.1088/1361-6560/ad2ca0.
|
[15] |
Carrasquinha E, Santinha J, Mongolin A, et al. Regularization Techniques in Radiomics: A Case Study on the Prediction of pCR in Breast Tumours and the Axilla; proceedings of the Computational Intelligence Methods for Bioinformatics and Biostatistics. Berlin: Springer International Publishing, 2020.
|
[16] |
Ribeiro GAS, da Silva MCB, et al. Clinical validation of an artificial intelligence algorithm for classifying tuberculosis and pulmonary findings in chest radiographs. Front Artif Intell, 2025, 8: 1512910. doi:10.3389/frai.2025.1512910.
|
[17] |
Ahamed Fayaz S, Babu L, Paridayal L, et al. Machine learning algorithms to predict treatment success for patients with pulmonary tuberculosis. PLoS One, 2024, 19(10): e0309151. doi:10.1371/journal.pone.0309151.
|
[18] |
Kheirandish M, Catanzaro D, Crudu V, et al. Integrating landmark modeling framework and machine learning algorithms for dynamic prediction of tuberculosis treatment outcomes. J Am Med Inform Assoc, 2022, 29(5): 900-908. doi:10.1093/jamia/ocac003.
pmid: 35139541
|
[19] |
张修磊, 王倩, 夏丽, 等. 肺结核X线胸片智能辅助诊断系统在基层医院的临床效能评价. 结核与肺部疾病杂志, 2022, 3(2): 96-101. doi:10.19983/j.issn.2096-8493.20210129.
|
[20] |
Nijiati M, Guo L, Abulizi A, et al. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol, 2023, 169: 111180. doi:10.1016/j.ejrad.2023.111180.
|