中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (9): 913-920.doi: 10.19982/j.issn.1000-6621.20230163
• 综述 • 上一篇
李依奇1, 柳永明2(), 陈耀龙3, 杨引君1, 刘贝1, 温发延1, 李岩1
收稿日期:
2023-05-18
出版日期:
2023-09-10
发布日期:
2023-09-01
通信作者:
柳永明,Email:基金资助:
Li Yiqi1, Liu Yongming2(), Chen Yaolong3, Yang Yinjun1, Liu Bei1, Wen Fayan1, Li Yan1
Received:
2023-05-18
Online:
2023-09-10
Published:
2023-09-01
Contact:
Liu Yongming,Email:Supported by:
摘要:
布鲁氏菌病是由布鲁氏菌引起的一种人畜共患传染病。布鲁氏菌集中于脊柱局部侵蚀椎体等组织引发腰背疼痛等相关症状,即为布鲁氏菌性脊柱炎。近年来,布鲁氏菌性脊柱炎发病率增高,临床中漏诊和误诊也时有发生。布鲁氏菌性脊柱炎发病机制较为复杂,目前尚无定论,故临床前实验显得尤为重要,动物模型是基础研究的重要方式,合适的模型研究对临床医生治疗疾病有指导意义。布鲁氏菌性脊柱炎较为复杂,动物模型建立相对困难。作者通过对已建立的动物模型进行分析讨论,以期为后续动物造模研究提供参考。
中图分类号:
李依奇, 柳永明, 陈耀龙, 杨引君, 刘贝, 温发延, 李岩. 布鲁氏菌性脊柱炎动物模型研究进展[J]. 中国防痨杂志, 2023, 45(9): 913-920. doi: 10.19982/j.issn.1000-6621.20230163
Li Yiqi, Liu Yongming, Chen Yaolong, Yang Yinjun, Liu Bei, Wen Fayan, Li Yan. Research progress on animal model of Brucella spondylitis[J]. Chinese Journal of Antituberculosis, 2023, 45(9): 913-920. doi: 10.19982/j.issn.1000-6621.20230163
[1] |
Al Jindan R. Scenario of pathogenesis and socioeconomic burden of human brucellosis in Saudi Arabia. Saudi J Biol Sci, 2021, 28(1):272-279. doi:10.1016/j.sjbs.2020.09.059.
doi: 10.1016/j.sjbs.2020.09.059 pmid: 33424306 |
[2] |
Dong SB, Wang LP, Wu CX, et al. A case of brucellosis concomitant with HIV infection in China. Infect Dis Poverty, 2020, 9(1):6. doi:10.1186/s40249-020-0624-7.
doi: 10.1186/s40249-020-0624-7 |
[3] |
王晓欢, 姜海. 全球人布鲁氏杆菌病流行特征. 中华流行病学杂志, 2020, 41 (10): 1717-1722. doi:10.3760/cma.j.cn112338-20191022-00751.
doi: 10.3760/cma.j.cn112338-20191022-00751 |
[4] |
Moreno E. The one hundred year journey of the genus Brucella (Meyer and Shaw 1920). FEMS Microbiol Rev, 2021, 45(1):fuaa045. doi:10.1093/femsre/fuaa045.
doi: 10.1093/femsre/fuaa045 URL |
[5] |
Fritz CL, Nguyen A, Vugia DJ. Epidemiology of Brucellosis in California, 1993—2017: A Continuing Foodborne Disease Risk for Older Latinos. Clin Infect Dis, 2021, 73(11):2023-2030. doi:10.1093/cid/ciab551.
doi: 10.1093/cid/ciab551 URL |
[6] |
Ma H, Zhang N, Liu J, et al. Pathological features of Brucella spondylitis: A single-center study. Ann Diagn Pathol, 2022, 58:151910. doi:10.1016/j.anndiagpath.2022.151910.
doi: 10.1016/j.anndiagpath.2022.151910 URL |
[7] |
中国防痨协会骨关节结核专业分会, 中国华北骨结核联盟, 中国西部骨结核联盟. 布鲁氏杆菌性脊柱炎诊断及治疗专家共识. 中国防痨杂志, 2022, 44(6):531-538. doi:10.19982/j.issn.1000-6621.20220138.
doi: 10.19982/j.issn.1000-6621.20220138 |
[8] |
Rizkalla JM, Alhreish K, Syed IY. Spinal Brucellosis: A Case Report and Review of the Literature. J Orthop Case Rep, 2021, 11(3):1-5. doi:10.13107/jocr.2021.v11.i03.2060.
doi: 10.13107/jocr.2021.v11.i03.2060 |
[9] |
Khurana SK, Sehrawat A, Tiwari R, et al. Bovine brucellosis—a comprehensive review. Vet Q, 2021, 41(1):61-88. doi:10.1080/01652176.2020.1868616.
doi: 10.1080/01652176.2020.1868616 pmid: 33353489 |
[10] |
Oliveira SC. Host Immune Responses and Pathogenesis to Brucella spp. Infection. Pathogens, 2021, 10(3):288. doi:10.3390/pathogens10030288.
doi: 10.3390/pathogens10030288 |
[11] |
Paci V, Krasteva I, Orsini M, et al. Proteomic analysis of Brucella melitensis and Brucella ovis for identification of virulence factor using bioinformatics approachs. Mol Cell Probes, 2020, 53:101581. doi:10.1016/j.mcp.2020.101581.
doi: 10.1016/j.mcp.2020.101581 URL |
[12] |
Sankarasubramanian J, Vishnu US, Gunasekaran P, et al. Identification of genetic variants of Brucella spp. through genome-wide association studies. Infect Genet Evol, 2017, 56:92-98. doi:10.1016/j.meegid.2017.11.016.
doi: S1567-1348(17)30397-0 pmid: 29154929 |
[13] |
King KA, Caudill MT, Caswell CC. A comprehensive review of small regulatory RNAs in Brucella spp. Front Vet Sci, 2022, 9:1026220. doi:10.3389/fvets.2022.1026220.
doi: 10.3389/fvets.2022.1026220 URL |
[14] |
Suárez-Esquivel M, Chaves-Olarte E, Moreno E, et al. Brucella Genomics: Macro and Micro Evolution. Int J Mol Sci, 2020, 21(20):7749. doi:10.3390/ijms21207749.
doi: 10.3390/ijms21207749 URL |
[15] | Alamian S, Dadar M, Etemadi A, et al. Antimicrobial susceptibility of Brucella spp. isolated from Iranian patients during 2016 to 2018. Iran J Microbiol, 2019, 11(5):363-367. |
[16] |
Yuan HT, Wang CL, Liu LN, et al. Epidemiologically charac-teristics of human brucellosis and antimicrobial susceptibility pattern of Brucella melitensis in Hinggan League of the Inner Mongolia Autonomous Region, China. Infect Dis Poverty, 2020, 9(1):79. doi:10.1186/s40249-020-00697-0.
doi: 10.1186/s40249-020-00697-0 |
[17] |
Roop RM 2nd, Barton IS, Hopersberger D, et al. Uncovering the Hidden Credentials of Brucella Virulence. Microbiol Mol Biol Rev, 2021, 85(1):e00021-19. doi:10.1128/MMBR.00021-19.
doi: 10.1128/MMBR.00021-19 |
[18] |
Buddingh GJ, Womack FC. Observations on the infection of chick embryos with bacterium tularense, brucella, and pasteurella pestis. J Exp Med, 1941, 74(3):213-222. doi:10.1084/jem.74.3.213.
doi: 10.1084/jem.74.3.213 pmid: 19871129 |
[19] |
Osman AY, Kadir AA, Jesse FF, et al. Modelling the immunopathophysiology of Brucella melitensis and its lipopolysaccharide in mice infected via oral route of exposure. Microb Pathog, 2019, 136:103669. doi:10.1016/j.micpath.2019.103669.
doi: 10.1016/j.micpath.2019.103669 URL |
[20] |
Stranahan LW, Khalaf OH, Garcia-Gonzalez DG, et al. Charac-terization of Brucella canis infection in mice. PLoS One, 2019, 14(6):e0218809. doi:10.1371/journal.pone.0218809.
doi: 10.1371/journal.pone.0218809 URL |
[21] |
Khalaf OH, Chaki SP, Garcia-Gonzalez DG, et al. The NOD-scid IL2rγnull Mouse Model Is Suitable for the Study of Osteoarticular Brucellosis and Vaccine Safety. Infect Immun, 2019, 87(6):e00901-18. doi:10.1128/IAI.00901-18.
doi: 10.1128/IAI.00901-18 |
[22] |
Dabral N, Burcham GN, Jain-Gupta N, et al. Overexpression of wbkF gene in Brucella abortus RB51WboA leads to increased O-polysaccharide expression and enhanced vaccine efficacy against B.abortus 2308, B.melitensis 16M, and B.suis 1330 in a murine brucellosis model. PLoS One, 2019, 14(3):e0213587. doi:10.1371/journal.pone.0213587.
doi: 10.1371/journal.pone.0213587 |
[23] |
Cai X, Xu T, Xun C, et al. Establishment and Initial Testing of a Medium-Sized, Surgically Feasible Animal Model for Brucellar Spondylodiscitis: A Preliminary Study. Biomed Res Int, 2019, 2019:7368627. doi:10.1155/2019/7368627.
doi: 10.1155/2019/7368627 |
[24] |
Bugybayeva D, Kydyrbayev Z, Zinina N, et al. A new candidate vaccine for human brucellosis based on influenza viral vectors: a preliminary investigation for the development of an immunization schedule in a guinea pig model. Infect Dis Poverty, 2021, 10(1):13. doi:10.1186/s40249-021-00801-y.
doi: 10.1186/s40249-021-00801-y pmid: 33593447 |
[25] |
Elzer PH, Hagius SD, Davis DS, et al. Characterization of the caprine model for ruminant brucellosis. Vet Microbiol, 2002, 90(1-4):425-431. doi:10.1016/s0378-1135(02)00226-2.
doi: 10.1016/s0378-1135(02)00226-2 pmid: 12414161 |
[26] |
Yingst SL, Huzella LM, Chuvala L, et al. A rhesus macaque (Macaca mulatta) model of aerosol-exposure brucellosis (Brucella suis): pathology and diagnostic implications. J Med Microbiol, 2010, 59(Pt 6):724-730. doi:10.1099/jmm.0.017285-0.
doi: 10.1099/jmm.0.017285-0 pmid: 20223898 |
[27] |
Enright FM, Araya LN, Elzer PH, et al. Comparative histopathology in BALB/c mice infected with virulent and attenuated strains of Brucella abortus. Vet Immunol Immunopathol, 1990, 26(2):171-182. doi:10.1016/0165-2427(90)90065-z.
doi: 10.1016/0165-2427(90)90065-z URL |
[28] |
Lacey CA, Mitchell WJ, Brown CR, et al. Temporal Role for MyD 88 in a Model of Brucella-Induced Arthritis and Musculoskeletal Inflammation. Infect Immun, 2017, 85(3):e00961-16. doi:10.1128/IAI.00961-16.
doi: 10.1128/IAI.00961-16 |
[29] |
Magnani DM, Lyons ET, Forde TS, et al. Osteoarticular tissue infection and development of skeletal pathology in murine brucellosis. Dis Model Mech, 2013, 6(3):811-818. doi:10.1242/dmm.011056.
doi: 10.1242/dmm.011056 pmid: 23519029 |
[30] |
Rajashekara G, Glover DA, Krepps M, et al. Temporal analysis of pathogenic events in virulent and avirulent Brucella melitensis infections. Cell Microbiol, 2005, 7(10):1459-1473. doi:10.1111/j.1462-5822.2005.00570.x.
doi: 10.1111/j.1462-5822.2005.00570.x pmid: 16153245 |
[31] |
Skyberg JA, Thornburg T, Kochetkova I, et al. IFN-γ-deficient mice develop IL-1-dependent cutaneous and musculoskeletal inflammation during experimental brucellosis. J Leukoc Biol, 2012, 92(2):375-387. doi:10.1189/jlb.1211626.
doi: 10.1189/jlb.1211626 URL |
[32] |
Mak IW, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res, 2014, 6(2):114-118.
pmid: 24489990 |
[33] |
Wu J, Xue J, Huang R, et al. A rabbit model of lumbar distraction spinal cord injury. Spine J, 2016, 16(5):643-658.
doi: 10.1016/j.spinee.2015.12.013 pmid: 26704859 |
[34] |
Cingöz İD. Role of Surgery in Brucella Spondylodiscitis: An Evaluation of 28 Patients. Cureus, 2023, 15(1):e33542. doi:10.7759/cureus.33542.
doi: 10.7759/cureus.33542 |
[35] |
Hou H, Liu X, Peng Q. The advances in brucellosis vaccines. Vaccine, 2019, 37(30):3981-3988. doi:10.1016/j.vaccine.2019.05.084.
doi: S0264-410X(19)30731-5 pmid: 31176541 |
[36] |
Neave MJ, Hall RN, Huang N, et al. Robust Innate Immunity of Young Rabbits Mediates Resistance to Rabbit Hemorrhagic Disease Caused by Lagovirus Europaeus GI.1 But Not GI.2. Viruses, 2018, 10(9):512. doi:10.3390/v10090512.
doi: 10.3390/v10090512 URL |
[37] | Bagi CM, Berryman E, Moalli MR. Comparative bone anatomy of commonly used laboratory animals: implications for drug discovery. Comp Med, 2011, 61(1):76-85. |
[38] |
Long C, Burgers E, Copple C, et al. Brucella canis discospondylitis in 33 dogs. Front Vet Sci, 2022, 9:1043610. doi:10.3389/fvets.2022.1043610.
doi: 10.3389/fvets.2022.1043610 URL |
[39] | Forbes JN, Frederick SW, Savage MY, et al. Brucella canis sacroiliitis and discospondylitis in a dog. Can Vet J, 2019, 60(12):1301-1304. |
[40] |
Huang Q, Liao X, Yang S, et al. Brucellosis spondylitis. Int J Infect Dis, 2020, 95:462-463. doi:10.1016/j.ijid.2020.03.052.
doi: S1201-9712(20)30184-3 pmid: 32251793 |
[41] |
杨新明, 孟宪勇, 胡长波, 等. 布氏杆菌性脊柱炎的规范化诊断及外科标准化治疗. 中华骨与关节外科杂志, 2016, 9(4):308-316. doi:10.3969/j.issn.2095-9958.2016.04-09.
doi: 10.3969/j.issn.2095-9958.2016.04-09 |
[42] |
Esmaeilnejad-Ganji SM, Esmaeilnejad-Ganji SMR. Osteoarticular manifestations of human brucellosis: A review. World J Orthop, 2019, 10(2):54-62. doi:10.5312/wjo.v10.i2.54.
doi: 10.5312/wjo.v10.i2.54 pmid: 30788222 |
[43] |
Louche A, Blanco A, Lacerda TLS, et al. Brucella effectors NyxA and NyxB target SENP 3 to modulate the subcellular localisation of nucleolar proteins. Nat Commun, 2023, 14(1):102. doi:10.1038/s41467-022-35763-8.
doi: 10.1038/s41467-022-35763-8 |
[44] |
Zhang D, Li X, Pi C, et al. Osteoporosis-decreased extracellular matrix stiffness impairs connexin 43-mediated gap junction intercellular communication in osteocytes. Acta Biochim Biophys Sin (Shanghai), 2020, 52(5):517-526. doi:10.1093/abbs/gmaa025.
doi: 10.1093/abbs/gmaa025 URL |
[45] |
Joyce K, Sakai D, Pandit A. Preclinical models of vertebral osteomyelitis and associated infections: Current models and recommendations for study design. JOR Spine, 2021, 4(2):e1142. doi:10.1002/jsp2.1142.
doi: 10.1002/jsp2.1142 pmid: 34337331 |
[46] |
Osman AY, Saharee AA, Jesse FF, et al. Comparative experi-mental study of Brucella melitensis and its lipopolysaccharide in mouse model infected via subcutaneous route of exposure. Microb Pathog, 2018, 116:318-327. doi:10.1016/j.micpath.2018.01.007.
doi: 10.1016/j.micpath.2018.01.007 URL |
[47] |
杨军, 邓强, 彭冉东, 等. 脊柱结核兔模型的建立及研究进展. 中国防痨杂志, 2023, 45(5):520-525. doi:10.19982/j.issn.1000-6621.20220516.
doi: 10.19982/j.issn.1000-6621.20220516 |
[48] |
Dutta D, Sen A, Gupta D, et al. Childhood Brucellosis in Eastern India. Indian J Pediatr, 2018, 85(4):266-271. doi:10.1007/s12098-017-2513-z.
doi: 10.1007/s12098-017-2513-z pmid: 29071584 |
[49] |
Tulu D. Bovine Brucellosis: Epidemiology, Public Health Implications, and Status of Brucellosis in Ethiopia. Vet Med (Auckl), 2022, 13:21-30. doi:10.2147/VMRR.S347337.
doi: 10.2147/VMRR.S347337 pmid: 35028300 |
[1] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[2] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[3] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[4] | 范俊, 王恒, 兰汀隆, 董伟杰, 唐恺, 李元, 严广璇, 徐尚胜, 康志刚, 秦世炳. 12例非结核分枝杆菌性脊柱炎手术治疗患者临床特征及治疗转归[J]. 中国防痨杂志, 2025, 47(1): 87-95. |
[5] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[6] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[7] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[8] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[9] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[10] | 何湘容, 陈华, 陈品儒, 梁锋, 任会丽, 朱家楼, 胡锦兴, 谭耀驹. 亚洲分枝杆菌肺病一例并文献复习[J]. 中国防痨杂志, 2024, 46(7): 763-769. |
[11] | 徐文辉, 张艳秋, 石洁, 孙定勇. 生物标志物在结核病诊断中的研究进展[J]. 中国防痨杂志, 2024, 46(6): 713-721. |
[12] | 尚雪恬, 潘丽萍. 组织激肽释放酶家族在病原微生物感染中的作用[J]. 中国防痨杂志, 2024, 46(2): 239-244. |
[13] | 陈玉杰, 王玲华, 程晓艳, 李慧圆. 医护人员结核分枝杆菌潜伏感染研究进展[J]. 中国防痨杂志, 2024, 46(12): 1541-1547. |
[14] | 何静, 张忠法. 肺结核患者混合感染其他病原体的研究进展[J]. 中国防痨杂志, 2024, 46(12): 1566-1572. |
[15] | 黎超凡, 陈志. 动物模型和3D细胞模型在结核病研究中的应用进展[J]. 中国防痨杂志, 2024, 46(12): 1527-1534. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||