[1] |
World Health Organization. Rapid communication: novel regimens for drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2024.
|
[2] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6):500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
[3] |
World Health Organization. Key Updates to the Treatment of Drug-Resistant Tuberculosis: Rapid Communication. Geneva: World Health Organization, 2024.
|
[4] |
首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所, 中国防痨协会, 《中国防痨杂志》编辑委员会. 耐药肺结核全口服化学治疗方案中国专家共识(2021年版). 中国防痨杂志, 2021, 43(9): 859-866. doi:10.3969/j.issn.1000-6621.2021.09.002.
|
[5] |
World Health Organization. Rapid communication: key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). Geneva: World Health Organization, 2024.
|
[6] |
World Health Organization. Global tuberculosis report 2024. Geneva: World Health Organization, 2024.
|
[7] |
Vanino E, Granozzi B, Akkerman OW, et al. Update of drug-resistant tuberculosis treatment guidelines: A turning point. Int J Infect Dis, 2023, 130 Suppl 1: S12-S15. doi:10.1016/j.ijid.2023.03.013.
|
[8] |
姚琳, 顾斌斌, 张建平. 抗结核药物所致药物不良反应的临床表现及其处置的研究进展. 抗感染药学, 2023, 20(12): 1229-1234. doi:10.13493/j.issn.1672-7878.2023.12-001.
|
[9] |
吴波. 结核病患者治疗管理新技术的应用与进展. 中国防痨杂志, 2019, 41(10): 1136-1140. doi:10.3969/j.issn.1000-6621.2019.10.014.
|
[10] |
Fregonese F, Ahuja SD, Akkerman OW, et al. Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis. Lancet Respir Med, 2018, 6(4): 265-275. doi:10.1016/S2213-2600(18)30078-X.
pmid: 29595509
|
[11] |
Conradie F, Diacon AH, Ngubane N, et al. Treatment of highly drug-resistant pulmonary tuberculosis. N Engl J Med, 2020, 382(10): 893-902. doi:10.1056/NEJMoa1901814.
|
[12] |
Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-pretomanid-linezolid regimens for drug-resistant tuberculosis. N Engl J Med, 2022, 387(9): 810-823. doi:10.1056/NEJMoa2119430.
|
[13] |
Das M, Dalal A, Laxmeshwar C, et al. One step forward: successful end-of-treatment outcomes of patients with drug-resistant tuberculosis who received concomitant bedaquiline and delamanid in Mumbai, India. Clin Infect Dis, 2021, 73(9): e3496-e3504. doi:10.1093/cid/ciaa1577.
|
[14] |
World Health Organization. WHO consolidated guidelines on tuberculosis: module 4: treatment-drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2022.
|
[15] |
Guglielmetti L, Khan U, Velásquez GE, et al. Oral regimens for rifampin-resistant, fluoroquinolone-susceptible tuberculosis. N Engl J Med, 2025, 392(5): 468-482. doi:10.1056/NEJMoa2400327.
|
[16] |
Padmapriyadarsini C, Vohra V, Bhatnagar A, et al. Bedaquiline, delamanid, linezolid and clofazimine for treatment of pre-extensively drug-resistant tuberculosis. Clin Infect Dis, 2022, 76(3): e938-e946. doi:10.1093/cid/ciac528.
|
[17] |
Bouton TC, de Vos M, Ragan EJ, et al. Switching to bedaquiline for treatment of rifampicin-resistant tuberculosis in South Africa: A retrospective cohort analysis. PLoS One, 2019, 14(10): e0223308. doi:10.1371/journal.pone.0223308.
|
[18] |
Tack I, Dumicho A, Ohler L, et al. Safety and effectiveness of an all-oral, bedaquiline-based, shorter treatment regimen for rifampicin-resistant tuberculosis in high human immunodeficiency virus (HIV) burden rural South Africa: a retrospective cohort analysis. Clin Infect Dis, 2021, 73(9): e3563-e3571. doi:10.1093/cid/ciaa1894.
|
[19] |
Van Deun A, Maug AK, Salim MA, et al. Short, highly effective, and inexpensive standardized treatment of multidrug-resistant tuberculosis. Am J Respir Crit Care Med, 2010, 182(5): 684-692. doi:10.1164/rccm.201001-0077OC.
|
[20] |
Guglielmetti L, Ardizzoni E, Atger M, et al. Evaluating newly approved drugs for multidrug-resistant tuberculosis (endTB): study protocol for an adaptive, multi-country randomized controlled trial. Trials, 2021, 22(1):651. doi:10.1186/s13063-021-05491-3.
pmid: 34563240
|
[21] |
Wang J, Nie W, Ma L, et al. Clinical utility of contezolid-containing regimens in 25 cases of linezolid-intolerable tuberculosis patients. Infect Drug Resist, 2023, 16: 6237-6245. doi:10.2147/IDR.S425743.
pmid: 37745897
|
[22] |
Jiang G, Liu R, Xue Y, et al. Contezolid Harbored Equivalent Efficacy to Linezolid in Tuberculosis Treatment in a Prospective and Randomized Early Bactericidal Activity Study. Infect Drug Resist, 2025, 18: 261-268. doi:10.2147/IDR.S499816.
pmid: 39830036
|
[23] |
Tingting C, Yuxia Z, Yanming S, et al. P-1070. Safety and Efficacy of Replacement with Contezolid-Containing Regimens in Patients with Multidrug-Resistant/Rifampicin-Resistant Tuberculosis Who are Intolerant to Linezolid-Containing Regimens: A Retrospective Case Analysis. Open Forum Infect Dis, 2025 (Suppl_1): Supplement_1. doi:10.1093/ofid/ofae631.1258.
|
[24] |
中国防痨协会, 《中国防痨杂志》编辑委员会, 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所, 等. 康替唑胺治疗结核病专家共识. 中国防痨杂志, 2025, 47(2): 123-129. doi:10.19982/j.issn.1000-6621.20240480.
|
[25] |
薛玉, 张静, 聂文娟. 含贝达喹啉方案治疗老年耐药肺结核患者的有效性及安全性. 中国防痨杂志, 2022, 44(6): 582-586. doi:10.19982/j.issn.1000-6621.20220019.
|
[26] |
Li Y, Chen L, Tang X, et al. Safety analysis of fluoroquinolone drugs in elderly patients over 65 based on FAERS. Expert Opin Drug Saf, 2024, 23(3): 1-13. doi:10.1080/14740338.2024.2392862.
|
[27] |
Padmapriyadarsini C, Oswal VS, Jain CD, et al. Effectiveness and safety of varying doses of linezolid with bedaquiline and pretomanid in treatment of drug-resistant pulmonary tuberculosis: Open-label, randomized clinical trial. Clin Infect Dis, 2024, 79(6): 1375-1385. doi:10.1093/cid/ciae388.
pmid: 39194339
|
[28] |
Wang X, Mallikaarjun S, Gibiansky E. Population pharmacokinetic analysis of delamanid in patients with pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2020, 65(1): e01202-20. doi:10.1128/AAC.01202-20.
|
[29] |
Liu Y, Tan Y, Wei G, et al. Safety and pharmacokinetic profile of pretomanid in healthy Chinese adults: Results of a phase I single dose escalation study. Pulm Pharmacol Ther, 2022, 73-74: 102132. doi:10.1016/j.pupt.2022.102132.
|
[30] |
Ryan NJ, Lo JH. Delamanid: first global approval. Drugs, 2014, 74(9): 1041-1045. doi:10.1007/s40265-014-0241-5.
pmid: 24923253
|
[31] |
Cao L, Greenblatt DJ, Kwara A. Inhibitory effects of selected antituberculosis drugs on common human hepatic cytochrome P450 and UDP-glucuronosyltransferase enzymes. Drug Metab Dispos, 2017, 45(9): 1035-1043. doi:10.1124/dmd.117.076034.
pmid: 28663285
|
[32] |
Pandie M, Wiesner L, McIlleron H, et al. Drug-drug interactions between bedaquiline and the antiretrovirals lopinavir/ritonavir and nevirapine in HIV-infected patients with drug-resistant TB. J Antimicrob Chemother, 2016, 71(4): 1037-1040. doi:10.1093/jac/dkv447.
pmid: 26747099
|
[33] |
Shimokawa Y, Sasahara K, Yoda N, et al. Delamanid does not inhibit or induce cytochrome P 450 enzymes in vitro. Biol Pharm Bull, 2014, 37(11): 1727-1735. doi:10.1248/bpb.b14-00311.
|
[34] |
Mallikaarjun S, Wells C, Petersen C, et al. Delamanid coadministered with antiretroviral drugs or antituberculosis drugs shows no clinically relevant drug-drug interactions in healthy subjects. Antimicrob Agents Chemother, 2016, 60(10): 5976-5985. doi:10.1128/AAC.00509-16.
pmid: 27458223
|
[35] |
中国防痨协会, 《中国防痨杂志》编辑委员会, 首都医科大学附属北京胸科医院. 抗结核药物所致QTc间期延长临床监测和管理专家共识. 中国防痨杂志, 2024, 46(1): 8-17. doi:10.19982/j.issn.1000-6621.20230271.
|
[36] |
中华医学会结核病学分会. 抗结核药物性肝损伤诊治指南(2019年版). 中华结核和呼吸杂志, 2019, 42(5): 343-356. doi:10.3760/cma.j.issn.1001-0939.2019.05.007.
|
[37] |
《中国防痨杂志》编委会, 中国医疗保健国际交流促进会结核病防治分会全国耐药结核病协作组. 耐药结核病化疗过程中药品不良反应处理的专家共识. 中国防痨杂志, 2019, 41(6): 591-603. doi:10.3969/j.issn.1000-6621.2019.06.003.
|
[38] |
文新民, 杨坤云, 易恒仲, 等. 138例耐多药肺结核患者使用环丝氨酸后的不良反应分析. 结核病与肺部健康杂志, 2018, 7(3): 194-197. doi:10.3969/j.issn.2095-3755.2018.03.010.
|
[39] |
Martiniano SL, Wagner BD, Levin A, et al. Safety and effectiveness of clofazimine for primary and refractory nontuberculous mycobacterial infection. Chest, 2017, 152(4): 800-809. doi:10.1016/j.chest.2017.04.175.
pmid: 28483608
|
[40] |
王怀冲, 徐颖颖, 张相彩, 等. 联合氯法齐明方案治疗耐多药肺结核的临床研究. 中国临床药理学与治疗学, 2012, 17(11): 1268-1271.
|
[41] |
肖桂荣, 吴逢波, 龙霞, 等. 抗结核药物不良反应管理的国内外指南综述分析. 药物流行病学杂志, 2014, 23(7): 444-449.
|