[1] |
World Health Organization.Global tuberculosis report 2024. Geneva: World Health Organization, 2024.
|
[2] |
Solans BP, Imperial MZ, Olugbosi M, et al. Analysis of Dynamic Efficacy Endpoints of the Nix-TB Trial. Clin Infect Dis, 2023, 76(11):1903-1910. doi:10.1093/cid/ciad051.
pmid: 36804834
|
[3] |
Conradie F, Bagdasaryan TR, Borisov S, et al. Bedaquiline-Pretomanid-Linezolid Regimens for Drug-Resistant Tuberculosis. N Engl J Med, 2022, 387(9):810-823. doi:10.1056/NEJMoa2119430.
|
[4] |
Evans D, Hirasen K, Casalme DJ, et al. Cost and cost-effectiveness of BPaL regimen used in drug-resistant TB treatment in the Philippines. IJTLD Open, 2024, 1(6):242-249. doi:10.5588/ijtldopen.24.0094.
pmid: 39021448
|
[5] |
Haley CA, Schechter MC, Ashkin D, et al. Implementation of Bedaquiline, Pretomanid, and Linezolid in the United States: Experience Using a Novel All-Oral Treatment Regimen for Treatment of Rifampin-Resistant or Rifampin-Intolerant Tuberculosis Disease. Clin Infect Dis, 2023, 77(7):1053-1062. doi:10.1093/cid/ciad312/7186062.
|
[6] |
Nyang’wa BT, Berry C, Kazounis E, et al. A 24-Week, All-Oral Regimen for Rifampin-Resistant Tuberculosis. N Engl J Med, 2022, 387(25):2331-2343. doi:10.1056/NEJMoa2117166.
|
[7] |
Wang L, Ma Y, Duan H, et al. Pharmacokinetics and tissue distribution study of PA-824 in rats by LC-MS/MS. J Chroma-togr B Analyt Technol Biomed Life Sci, 2015, 1006:194-200. doi:10.1016/j.jchromb.2015.10.039.
|
[8] |
Metcalfe J, Gerona R, Wen A, et al. An LC-MS/MS-based method to analyze the anti-tuberculosis drug bedaquiline in hair. Int J Tuberc Lung Dis, 2017, 21(9):1069-1070. doi:10.5588/ijtld.17.0408.
pmid: 28826458
|
[9] |
Souza E, Felton J, Crass RL, et al. Development of a sensitive LC-MS/MS method for quantification of linezolid and its primary metabolites in human serum. J Pharm Biomed Anal, 2020, 178:112968. doi:10.1016/j.jpba.2019.112968.
|
[10] |
Bratkowska D, Shobo A, Singh S, et al. Determination of the antitubercular drug PA-824 in rat plasma, lung and brain tissues by liquid chromatography tandem mass spectrometry: application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 988:187-194. doi:10.1016/j.jchromb.2015.02.041.
pmid: 25796075
|
[11] |
Gray WA, Waldorf B, Rao MG, et al. Development and validation of an LC-MS/MS method for the simultaneous determination of bedaquiline and rifabutin in human plasma. J Pharm Biomed Anal, 2019, 176:112775. doi:10.1016/j.jpba.2019.07.023.
|
[12] |
Wang L, Zhao J, Zhang R, et al. Drug-Drug Interactions Between PA-824 and Darunavir Based on Pharmacokinetics in Rats by LC-MS-MS. J Chromatogr Sci, 2018, 56(4):327-335. doi:10.1093/chromsci/bmy002.
pmid: 29373758
|
[13] |
Ferrari D, Ripa M, Premaschi S, et al. LC-MS/MS method for simultaneous determination of linezolid, meropenem, piperacillin and teicoplanin in human plasma samples. J Pharm Biomed Anal, 2019, 169:11-18. doi:10.1016/j.jpba.2019.02.037.
pmid: 30826487
|
[14] |
朱慧, 付雷, 张炜焱, 等. 五种抗结核新药在小鼠体内的药代动力学-药效学初步研究. 中国防痨杂志, 2021, 43(10):1054-1065. doi:10.3969/j.issn.1000-6621.2021.10.015.
|
[15] |
Pieterman ED, Te Brake LHM, de Knegt GJ, et al. Assessment of the Additional Value of Verapamil to a Moxifloxacin and Linezolid Combination Regimen in a Murine Tuberculosis Model. Antimicrob Agents Chemother, 2018, 62(9):e01354-18. doi:10.1128/aac.01354-18.
|
[16] |
Rouan MC, Lounis N, Gevers T, et al. Pharmacokinetics and pharmacodynamics of TMC207 and its N-desmethyl metabolite in a murine model of tuberculosis. Antimicrob Agents Chemother, 2012, 56(3):1444-1451. doi:10.1128/aac.00720-11.
|
[17] |
Ilbeigi V, Valadbeigi Y, Moravsky L, et al. Formic Acid as a Dopant for Atmospheric Pressure Chemical Ionization for Negative Polarity of Ion Mobility Spectrometry and Mass Spectrometry. J Am Soc Mass Spectrom, 2023, 34(9):2051-2060. doi:10.1021/jasms.3c00225.
|
[18] |
Johnson D, Boyes B, Orlando R. The use of ammonium formate as a mobile-phase modifier for LC-MS/MS analysis of tryptic digests. JBT, 2013, 24(4): 187-197. doi:10.7171/jbt.13-2404-005.
|
[19] |
Perrineau S, Lachâtre M, Lê MP, et al. Long-term plasma pharmacokinetics of bedaquiline for multidrug- and extensively drug-resistant tuberculosis. Int J Tuberc Lung Dis, 2019, 23(1):99-104. doi:10.5588/ijtld.18.0042.
pmid: 30674381
|
[20] |
Vazvaei-Smith F, Wickremsinhe E, Woolf E, et al. ICH M10 Bioanalytical Method Validation Guideline-1 year Later. AAPS J, 2024, 26(5):103. doi:10.1208/s12248-024-00974-y.
pmid: 39266900
|
[21] |
Ngwalero P, Brust JCM, van Beek SW, et al. Relationship between Plasma and Intracellular Concentrations of Bedaquiline and Its M2 Metabolite in South African Patients with Rifampin-Resistant Tuberculosis. Antimicrob Agents Chemother, 2021, 65(11):e0239920. doi:10.1128/aac.02399-20.
|
[22] |
Chen J, Zhu C, He Y, et al. Comparison of Plasma Concentration of Linezolid’s Det-ection by FICA and LC-MS/MS. J Chromatogr Sci, 2024, 62(10):990-994. doi:10.1093/chromsci/bmae003.
|
[23] |
Lakshminarayana SB, Boshoff HI, Cherian J, et al. Pharmacokinetics-pharmacodynamics analysis of bicyclic 4-nitroimi-dazole analogs in a murine model of tuberculosis. PLoS One, 2014, 9(8):e105222. doi:10.1371/journal.pone.0105222.
|
[24] |
Liu F, Gao J, Gao M, et al. Development and Validation of a Nomogram for Prediction of QT Interval Prolongation in Patients Administered Bedaquiline-Containing Regimens in China: a Modeling Study. Antimicrob Agents Chemother, 2022, 66(9):e0203321. doi:10.1128/aac.02033-21.
|
[25] |
Bigelow KM, Deitchman AN, Li SY, et al. Pharmacodynamic Correlates of Linezolid Activity and Toxicity in Murine Models of Tuberculosis. J Infect Dis, 2021, 223(11):1855-1864. doi:10.1093/infdis/jiaa016.
pmid: 31993638
|
[26] |
Zhou W, Nie W, Wang Q, et al. Linezolid Pharmacokinetics/Pharmacodynamics-Based Optimal Dosing for Multidrug-Resistant Tuberculosis. Int J Antimicrob Agents, 2022, 59(6): 106589. doi:10.1016/j.ijantimicag.2022.106589.
|