中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (5): 660-665.doi: 10.19982/j.issn.1000-6621.20240548
杨廷玉1, 萨日娜1, 王芙蓉1,2, 陈琛2, 郑兰兵1,2()
收稿日期:
2024-12-05
出版日期:
2025-05-10
发布日期:
2025-04-29
通信作者:
郑兰兵
E-mail:lanbingzheng@yeah.net
基金资助:
Yang Tingyu1, Sarina 1, Wang Furong1,2, Chen Chen2, Zheng Lanbing1,2()
Received:
2024-12-05
Online:
2025-05-10
Published:
2025-04-29
Contact:
Zheng Lanbing
E-mail:lanbingzheng@yeah.net
Supported by:
摘要:
目前,结核病治疗仍面临着严重的挑战。传统药物治疗带来了多种问题,如治疗时间长、患者依从性差、生物利用度低等。特别是耐药菌的产生,严重影响了治疗效果。但纳米材料的出现却可以克服当前结核病治疗中的问题,改变治疗方式,从而提高治疗效果。基于此,作者对纳米材料在结核病治疗中的最新研究进展进行了综述,对纳米材料在治疗过程中发挥的功能进行了分类和讨论;简述了直接治疗纳米材料,重点介绍了药物递送纳米材料,并对最新的光疗纳米材料进行了探讨。最后,对纳米材料所面临的挑战以及未来的发展进行了总结和展望。
中图分类号:
杨廷玉, 萨日娜, 王芙蓉, 陈琛, 郑兰兵. 纳米材料在结核病治疗中的研究进展[J]. 中国防痨杂志, 2025, 47(5): 660-665. doi: 10.19982/j.issn.1000-6621.20240548
Yang Tingyu, Sarina , Wang Furong, Chen Chen, Zheng Lanbing. Research progress of nanomaterials in the treatment of tuberculosis[J]. Chinese Journal of Antituberculosis, 2025, 47(5): 660-665. doi: 10.19982/j.issn.1000-6621.20240548
[1] | World Health Organization.Global tuberculosis report 2024. Geneva: World Health Organization, 2024. |
[2] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6): 500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[3] | 舒薇, 刘宇红. 笃志创新躬行致远: 世界卫生组织《2023年全球结核病报告》结核病科学研究章节解读. 中国防痨杂志, 2024, 46(6): 613-617. doi:10.19982/j.issn.1000-6621.20240159. |
[4] | Nair A, Greeny A, Nandan A, et al. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J Nanobiotechnology, 2023, 21(1): 414. doi:10.1186/s12951-023-02156-y. |
[5] | 田娜, 褚洪迁, 孙照刚. 纳米药物递送系统在结核病治疗中的研究进展. 中国防痨杂志, 2022, 44(7): 732-737. doi:10.19982/j.issn.1000-6621.20220036. |
[6] | Bourguignon T, Godinez-Leon JA, Gref R. Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics, 2023, 15(2): 393. doi:10.3390/pharmaceutics15020393. |
[7] | 林倩妃, 范书豪, 皮江. 纳米材料在皮肤结核病诊疗中的潜在应用. 广东医科大学学报, 2024, 42(3): 227-240. doi:10.3969/j.issn.1005-4057.2024.03.001. |
[8] | 戴桂琴, 何卓俊, 刘德亮, 等. 纳米材料在结核病诊疗中的应用. 生物化学与生物物理进展, 2023, 50(8): 1841-1854. doi:10.16476/j.pibb.2022.0392. |
[9] | Tăbăran AF, Matea CT, Mocan T, et al. Silver Nanoparticles for the Therapy of Tuberculosis. Int J Nanomedicine, 2020, 15: 2231-2258. doi:10.2147/IJN.S241183. |
[10] | Behzad F, Sefidgar E, Samadi A. An Overview of Zinc Oxide Nanoparticles Produced by Plant Extracts for Anti-tuberculosis Treatments. Curr Med Chem, 2022, 29(1): 86-98. doi:10.2174/0929867328666210614122109. |
[11] |
Heidary M, Zaker Bostanabad S, Amini SM, et al. The Anti-Mycobacterial Activity Of Ag, ZnO, And Ag-ZnO Nanoparticles Against MDR-And XDR-Mycobacterium tuberculosis. Infect Drug Resist, 2019, 12: 3425-3435. doi:10.2147/IDR.S221408.
pmid: 31807033 |
[12] | Vidyasagar, Patel RR, Singh SK, et al. Facile green synthesis of silver nanoparticles derived from the medicinal plant Clerodendrum serratum and its biological activity against Mycobacterium species. Heliyon, 2024, 10(10): e31116. doi:10.1016/j.heliyon.2024.e31116. |
[13] | Chen CC, Chen YY, Yeh CC, et al. Alginate-Capped Silver Nanoparticles as a Potent Anti-mycobacterial Agent Against Mycobacterium tuberculosis. Front Pharmacol, 2021, 12: 746496. doi:10.3389/fphar.2021.746496. |
[14] | Ge X, Liang Z, Li K, et al. Selenium nanoparticles enhance mucosal immunity against Mycobacterium bovis infection. Int Immunopharmacol, 2024, 137: 112384. doi:10.1016/j.intimp.2024.112384. |
[15] | Lin W, Fan S, Liao K, et al. Engineering zinc oxide hybrid selenium nanoparticles for synergetic anti-tuberculosis treatment by combining Mycobacterium tuberculosis killings and host cell immunological inhibition. Front Cell Infect Microbiol, 2023, 12: 1074533. doi:10.3389/fcimb.2022.1074533. |
[16] | Santarelli G, Perini G, Salustri A, et al. Unraveling the potential of graphene quantum dots against Mycobacterium tuberculosis infection. Front Microbiol, 2024, 15: 1395815. doi:10.3389/fmicb.2024.1395815. |
[17] |
Mignani S, Tripathi VD, Soam D, et al. Safe Polycationic Dendrimers as Potent Oral In Vivo Inhibitors of Mycobacterium tuberculosis: A New Therapy to Take Down Tuberculosis. Biomacromolecules, 2021, 22(6): 2659-2675. doi:10.1021/acs.biomac.1c00355.
pmid: 33970615 |
[18] | Imran M, Singh S, Ahmad MN, et al. Polycationic phosphorous dendrimer potentiates multiple antibiotics against drug-resis-tant mycobacterial pathogens. Biomed Pharmacother, 2024, 173: 116289. doi:10.1016/j.biopha.2024.116289. |
[19] |
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, et al. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater, 2024, 39: 106-134. doi:10.1016/j.bioactmat.2024.05.013.
pmid: 38783925 |
[20] | Beitzinger B, Gerbl F, Vomhof T, et al. Delivery by Dendritic Mesoporous Silica Nanoparticles Enhances the Antimicrobial Activity of a Napsin-Derived Peptide Against Intracellular Mycobacterium tuberculosis. Adv Healthc Mater, 2021, 10(14): 2100453. doi:10.1002/adhm.202100453. |
[21] | Zhu P, Cai L, Liu Q, et al. One-pot synthesis of α-Linolenic acid nanoemulsion-templated drug-loaded silica mesocomposites as efficient bactericide against drug-resistant Mycobacterium tuberculosis. Eur J Pharm Sci, 2022, 176: 106261. doi:10.1016/j.ejps.2022.106261. |
[22] | Campos Pacheco JE, Yalovenko T, Riaz A, et al. Inhalable porous particles as dual micro-nano carriers demonstrating efficient lung drug delivery for treatment of tuberculosis. J Control Release, 2024, 369:231-250. doi:10.1016/j.jconrel.2024.03.013. |
[23] | Shah S, Cristopher D, Sharma S, et al. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J Drug Deliv Sci Tec, 2020, 60: 102013. doi:10.1016/j.jddst.2020.102013. |
[24] | de Castro RR, do Carmo FA, Martins C, et al. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int J Pharm, 2021, 602: 120655. doi:10.1016/j.ijpharm.2021.120655. |
[25] | Yang L, Chaves L, Kutscher HL, et al. An immunoregulator nanomedicine approach for the treatment of tuberculosis. Front Bioeng Biotechnol, 2023, 11: 1095926. doi:10.3389/fbioe.2023.1095926. |
[26] |
Lunn AM, Unnikrishnan M, Perrier S. Dual pH-Responsive Macrophage-Targeted Isoniazid Glycoparticles for Intracellular Tuberculosis Therapy. Biomacromolecules, 2021, 22(9): 3756-3768. doi:10.1021/acs.biomac.1c00554.
pmid: 34339606 |
[27] |
Pawde DM, Viswanadh MK, Mehata AK, et al. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm J, 2020, 28(12): 1616-1625. doi:10.1016/j.jsps.2020.10.008.
pmid: 33424254 |
[28] | Hatae AC, Roque-Borda CA, Pavan FR. Strategies for lipid-based nanocomposites with potential activity against Mycobacterium tuberculosis: Microbial resistance challenge and drug delivery trends. OpenNano, 2023, 13: 100171. doi:10.1016/j.onano.2023.100171. |
[29] | Moradi M, Vahedi F, Abbassioun A, et al. Liposomal delivery system/adjuvant for tuberculosis vaccine. Immun Inflamm Dis, 2023, 11(6): e867. doi:10.1002/iid3.867. |
[30] | Gonçalves J, Marques C, Nunes C, et al. Therapeutic Liquid Eutectic Solvents in Lipid Nanoparticles as Drug Vehicles-A Proof of Concept. Int J Mol Sci, 2023, 24(21): 15648. doi:10.3390/ijms242115648. |
[31] | Paul PK, Nakpheng T, Paliwal H, et al. Inhalable solid lipid nanoparticles of levofloxacin for potential tuberculosis treatment. Int J Pharm, 2024, 660: 124309. doi:10.1016/j.ijpharm.2024.124309. |
[32] | Bera H, Zhao C, Tian X, et al. Mannose-Decorated Solid-Lipid Nanoparticles for Alveolar Macrophage Targeted Delivery of Rifampicin. Pharmaceutics, 2024, 16(3): 429. doi:10.3390/pharmaceutics16030429. |
[33] | Pu X, Wang Y, Wang X, et al. Lipids Extracted from Mycobacterial Membrane and Enveloped PLGA Nanoparticles for Encapsulating Antibacterial Drugs Elicit Synergistic Antimicrobial Response against Mycobacteria. Mol Pharm, 2024, 21(5): 2238-2249. doi:10.1021/acs.molpharmaceut.3c01001. |
[34] | Caggiano NJ, Armstrong MS, Georgiou JS, et al. Formulation and Scale-up of Delamanid Nanoparticles via Emulsification for Oral Tuberculosis Treatment. Mol Pharm, 2023, 20(9): 4546-4558. doi:10.1021/acs.molpharmaceut.3c00240. |
[35] | Menon PM, Chandrasekaran N, C GPD, et al. Multi-drug loaded eugenol-based nanoemulsions for enhanced anti-mycobacterial activity. RSC Med Chem, 2023, 14(3): 433-443. doi:10.1039/d2md00320a. |
[36] | Suman SK, Chandrasekaran N, Priya Doss CG. Micro-nanoemulsion and nanoparticle-assisted drug delivery against drug-resistant tuberculosis: recent developments. Clin Microbiol Rev, 2023, 36(4): e0008823. doi:10.1128/cmr.00088-23. |
[37] | Li H, Ding Y, Huang J, et al. Angiopep-2 Modified Exosomes Load Rifampicin with Potential for Treating Central Nervous System Tuberculosis. Int J Nanomedicine, 2023, 18: 489-503. doi:10.2147/IJN.S395246. |
[38] | Wang J, Chen D, Ho EA. Challenges in the development and establishment of exosome-based drug delivery systems. J Control Release, 2021, 329: 894-906. doi:10.1016/j.jconrel.2020.10.020 |
[39] | Ahmed W, Mushtaq A, Ali S, et al. Engineering Approaches for Exosome Cargo Loading and Targeted Delivery: Biological versus Chemical Perspectives. ACS Biomater Sci Eng, 2024, 10(10): 5960-5976. doi:10.1021/acsbiomaterials.4c00856. |
[40] | Sun YF, Pi J, Xu JF. Emerging Role of Exosomes in Tuberculosis: From Immunity Regulations to Vaccine and Immunotherapy. Front Immunol, 2021, 12: 628973. doi:10.3389/fimmu.2021.628973. |
[41] | Sun X, Li W, Zhao L, et al. Current landscape of exosomes in tuberculosis development, diagnosis, and treatment applications. Front Immunol, 2024, 15: 1401867. doi:10.3389/fimmu.2024.1401867. |
[42] | Lu M, Li S, Liu Y, et al. Advances in phototherapy for infectious diseases. Nano Today, 2024, 57: 102327. doi:10.1016/j.nantod.2024.102327. |
[43] | Yu B, Liu Q, Sun J, et al. Phototherapy-based multifunctional nanoplatform for synergistic therapy against drug resistance bacteria: Progress, advances and challenges. Chem Eng J, 2024, 487: 150705. doi:10.1016/j.cej.2024.150705. |
[44] | Manivasagan P, Thambi T, Joe A, et al. Progress in nanomaterial-based synergistic photothermal-enhanced chemodynamic therapy in combating bacterial infections. Prog Mater Sci, 2024, 144: 101292. doi:10.1016/j.pmatsci.2024.101292. |
[45] | He X, Lv Y, Lin Y, et al. Platinum Nanoparticles Regulated V2C MXene Nanoplatforms with NIR-Ⅱ Enhanced Nanozyme Effect for Photothermal and Chemodynamic Anti-Infective Therapy. Adv Mater, 2024, 36(25): 2400366. doi:10.1002/adma.202400366. |
[46] | He C, Feng P, Hao M, et al. Nanomaterials in Antibacterial Photodynamic Therapy and Antibacterial Sonodynamic Therapy. Adv Funct Mater, 2024, 34(38): 2402588. doi:10.1002/adfm.202402588. |
[47] | Elian C, Méallet R, Versace DL. Photoactive Dye-Loaded Polymer Materials: A New Cutting Edge for Antibacterial Photodynamic Therapy. Adv Funct Mater, 2024, 34(44): 2407228. doi:10.1002/adfm.202407228. |
[48] | Mehnath S, Chitra K, Jeyaraj M. An all-in-one nanomaterial derived from rGO-MoS2 for photo/chemotherapy of tuberculosis. New J Chem, 2022, 46: 6433-6445. doi:10.1039/d1nj03549e. |
[49] |
Tian N, Duan H, Cao T, et al. Macrophage-targeted nanoparticles mediate synergistic photodynamic therapy and immunotherapy of tuberculosis. RSC Adv, 2023, 13(3): 1727-1737. doi:10.1039/d2ra06334d.
pmid: 36712647 |
[50] | Li B, Wang W, Zhao L, et al. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. Nat Nanotechnol, 2024, 19(6): 834-845. doi:10.1038/s41565-024-01618-0. |
[51] | Cai Q, Tian Y, Shubhra QTH. Pre-activated macrophage membrane-encased aggregation-induced emission featuring nanoparticles: a novel possibility for tuberculosis treatment. Signal Transduct Target Ther, 2024, 9(1): 164. doi:10.1038/s41392-024-01855-8. |
[1] | 中国防痨协会结核病基础专业分会. 中国结核分枝杆菌微量肉汤稀释法药物敏感性试验标准化专家共识[J]. 中国防痨杂志, 2025, 47(5): 535-545. |
[2] | 中国人民解放军总医院第八医学中心结核病医学部 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会结核病防治分会基础和临床学部. 泌尿系统结核的诊断与治疗专家共识[J]. 中国防痨杂志, 2025, 47(5): 546-558. |
[3] | 刘巧, 李忠奇, 竺丽梅, 陆伟. 中国结核病防治服务体系运行现状、问题与对策研究[J]. 中国防痨杂志, 2025, 47(5): 559-568. |
[4] | 柳芳超, 张迪, 弭凤玲, 李自慧, 黄海荣, 潘丽萍, 时广利, 姜广路, 潘军华. 结核病临床检验实验室生物安全管理指标体系构建[J]. 中国防痨杂志, 2025, 47(5): 569-576. |
[5] | 巫株华, 王永, 赖晓宇, 纪丽微, 陈蕊明, 吕纯芳, 徐镠粤, 郭卉欣, 陈瑜晖, 梁鸿迪, 刘盛元, 钟新光, 陈珣珣. MiniDock MTB Test用于结核病快速诊断的效能评价[J]. 中国防痨杂志, 2025, 47(5): 577-581. |
[6] | 姚明旭, 王泽琦, 宋瑞雪, 贾红彦, 孙琦, 张蓝月, 杜博平, 张宗德, 汪雯, 吴亮, 潘丽萍. 结核抗原特异细胞因子在HIV感染者中诊断结核病的临床价值评估[J]. 中国防痨杂志, 2025, 47(5): 605-612. |
[7] | 程文, 朱慧, 付雷, 张炜焱, 张立群, 陆宇. HPLC-MS/MS法同时测定血浆中贝达喹啉、普托马尼和利奈唑胺的方法学建立及应用[J]. 中国防痨杂志, 2025, 47(5): 613-622. |
[8] | 赵玲娟, 刘浩然, 聂文娟, 王伟. miRNA-451a参与血行播散性肺结核发病机制的初步研究[J]. 中国防痨杂志, 2025, 47(5): 623-628. |
[9] | 黄辉敏, 王蕾, 程丽平, 孙勤, 王文娟, 杨华. TMEM173、IFNGR1、IFNGR2和IRF8基因单核苷酸多态性与结核病易感性的相关性研究[J]. 中国防痨杂志, 2025, 47(5): 629-638. |
[10] | 胡轶君, 徐怡婷, 蹇荣华, 吴惠忠, 苏静, 肖建鹏, 蒋辰祺, 刘涛, 王嘉雯, 陈亮. 2014—2019年广东省耐多药结核病时空分布特征与风险评估[J]. 中国防痨杂志, 2025, 47(5): 639-646. |
[11] | 李婷, 夏岚, 刘双, 王丹霞, 逯嘉, 於一帆, 程钎钎. 四川省强化省、市两级结核病定点医疗机构患者登记管理干预的短期效果分析[J]. 中国防痨杂志, 2025, 47(5): 647-652. |
[12] | 王雷, 陈迟到, 宿连政, 李凌玮, 王欣淼, 王鹏, 黄忠浩. 欧洲人种新型冠状病毒感染与结核病发病风险因果关系:一项双样本孟德尔随机化研究[J]. 中国防痨杂志, 2025, 47(5): 653-659. |
[13] | 王苑柠, 杜宗敏. CRISPR/Cas分子诊断技术在结核分枝杆菌耐药性检测中的研究进展[J]. 中国防痨杂志, 2025, 47(5): 666-672. |
[14] | 张天相, 徐红艳, 施婕, 任萌, 张明. 重症中枢神经系统结核合并矛盾反应一例[J]. 中国防痨杂志, 2025, 47(5): 673-679. |
[15] | 中国防痨协会结核病控制专业分会, 中国防痨协会青年分会, 《中国防痨杂志》编辑委员会. 中国结核病数字服药依从性技术应用指南[J]. 中国防痨杂志, 2025, 47(4): 385-397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||