[1] |
胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5 (6): 500-504. doi:10.19983/j.issn.2096-8493.2024164.
|
[2] |
舒薇, 刘宇红. 世界卫生组织《2023年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5 (1): 15-19. doi:10.19983/j.issn.2096-8493.2024006.
|
[3] |
Liu D, Huang F, Zhang G, et al. Whole-genome sequencing for surveillance of tuberculosis drug resistance and determination of resistance level in China. Clin Microbiol Infect, 2022, 28(5):731.e9-731.e15. doi:10.1016/j.cmi.2021.09.014.
|
[4] |
Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas 14 enzymes. Science, 2018, 362(6416):839-842. doi:10.1126/science.aav4294.
pmid: 30337455
|
[5] |
Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet, 1993, 341(8846):647-650. doi:10.1016/0140-6736(93)90417-f.
pmid: 8095569
|
[6] |
Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis, 1998, 79(1):3-29. doi:10.1054/tuld.1998.0002.
|
[7] |
Vilchèze C, Jacobs WR Jr. Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis: Genes, Mutations, and Causalities. Microbiol Spectr, 2014, 2(4):MGM2-0014-2013. doi:10.1128/microbiolspec.MGM2-0014-2013.
|
[8] |
Hazbón MH, Brimacombe M, Bobadilla del Valle M, et al. Population genetics study of isoniazid resistance mutations and evolution of multidrug-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2006, 50(8):2640-2649. doi:10.1128/AAC.00112-06.
|
[9] |
van Doorn HR, Kuijper EJ, van der Ende A, et al. The susceptibility of Mycobacterium tuberculosis to isoniazid and the Arg-->Leu mutation at codon 463 of katG are not associated. J Clin Microbiol, 2001, 39(4):1591-1594. doi:10.1128/JCM.39.4.1591-1594.2001.
|
[10] |
Rozwarski DA, Grant GA, Barton DH, et al. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science, 1998, 279(5347):98-102. doi:10.1126/science.279.5347.98.
pmid: 9417034
|
[11] |
Mokrousov I, Narvskaya O, Otten T, et al. High prevalence of KatG Ser315Thr substitution among isoniazid-resistant Mycobacterium tuberculosis clinical isolates from northwestern Russia, 1996 to 2001. Antimicrob Agents Chemother, 2002, 46(5):1417-1424. doi:10.1128/AAC.46.5.1417-1424.2002.
|
[12] |
Müller B, Streicher EM, Hoek KG, et al. inhA promoter mutations: a gateway to extensively drug-resistant tuberculosis in South Africa?. Int J Tuberc Lung Dis, 2011, 15(3):344-351.
pmid: 21333101
|
[13] |
Lee AS, Lim IH, Tang LL, et al. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother, 1999, 43(8):2087-2089. doi:10.1128/AAC.43.8.2087.
pmid: 10428945
|
[14] |
Kelley CL, Rouse DA, Morris SL. Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 1997, 41(9):2057-2058. doi:10.1128/AAC.41.9.2057.
pmid: 9303417
|
[15] |
Sreevatsan S, Pan X, Zhang Y, et al. Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother, 1997, 41(3):600-606. doi:10.1128/AAC.41.3.600.
pmid: 9056000
|
[16] |
World Health Organization. WHO consolidated guidelines on tuberculosis: module 3: diagnosis: rapid diagnostics for tuberculosis detection, 2021 update. Geneva:World Health Organization, 2021.
|
[17] |
de Vos M, David A, Duraisamy K, et al. Accuracy of cobas MTB and MTB-RIF/INH for Detection of Mycobacterium tuberculosis and Drug Resistance. J Mol Diagn, 2024, 26(8):708-718. doi:10.1016/j.jmoldx.2024.05.004.
|
[18] |
Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol, 2011, 9(6):467-477. doi:10.1038/nrmicro2577.
pmid: 21552286
|
[19] |
Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol, 2017, 15(3):169-182. doi:10.1038/nrmicro.2016.184.
pmid: 28111461
|
[20] |
Jiang H, Li Y, Lv X, et al. Recent advances in cascade isothermal amplification techniques for ultra-sensitive nucleic acid detection. Talanta, 2023, 260:124645. doi:10.1016/j.talanta.2023.124645.
|
[21] |
Zhou M, Li X, Wen H, et al. The construction of CRISPR/Cas9-mediated FRET 16S rDNA sensor for detection of Mycobacterium tuberculosis. Analyst, 2023, 148(10):2308-2315. doi:10.1039/d3an00462g.
|
[22] |
Zhang Y, Qian L, Wei W, et al. Paired Design of dCas 9 as a Systematic Platform for the Detection of Featured Nucleic Acid Sequences in Pathogenic Strains. ACS Synth Biol, 2017, 6(2):211-216. doi:10.1021/acssynbio.6b00215.
|
[23] |
Augustin L, Agarwal N. Designing a Cas9/gRNA-assisted quantitative Real-Time PCR (CARP) assay for identification of point mutations leading to rifampicin resistance in the human pathogen Mycobacterium tuberculosis. Gene, 2023, 857:147173. doi:10.1016/j.gene.2023.147173.
|
[24] |
Liu P, Wang X, Liang J, et al. A Recombinase Polymerase Amplification-Coupled Cas12a Mutant-Based Module for Efficient Detection of Streptomycin-Resistant Mutations in Mycobacterium tuberculosis. Front Microbiol, 2022,12:796916. doi:10.3389/fmicb.2021.796916.
|
[25] |
Peng L, Fang T, Cai Q, et al. Rapid detection of Mycobacterium tuberculosis in sputum using CRISPR-Cas12b combined with cross-priming amplification in a single reaction. J Clin Microbiol, 2024, 62(1):e0092323. doi:10.1128/jcm.00923-23.
|
[26] |
Wang Y, Li J, Li S, et al. LAMP-CRISPR-Cas12-based diagnostic platform for detection of Mycobacterium tuberculosis complex using real-time fluorescence or lateral flow test. Mikrochim Acta, 2021, 188(10):347. doi:10.1007/s00604-021-04985-w.
pmid: 34542728
|
[27] |
Xu H, Zhang X, Cai Z, et al. An Isothermal Method for Sensitive Detection of Mycobacterium tuberculosis Complex Using Clustered Regularly Interspaced Short Palindromic Repeats/Cas12a Cis and Trans Cleavage. J Mol Diagn, 2020, 22(8):1020-1029. doi:10.1016/j.jmoldx.2020.04.212.
|
[28] |
Cao G, Yang N, Xiong Y, et al. Completely Free from PAM Limitations: Asymmetric RPA with CRISPR/Cas12a for Nucleic Acid Assays. ACS Sens, 2023, 8(12):4655-4663. doi:10.1021/acssensors.3c01686.
|
[29] |
Thakku SG, Lirette J, Murugesan K, et al. Genome-wide tiled detection of circulating Mycobacterium tuberculosis cell-free DNA using Cas13. Nat Commun, 2023, 14(1):1803. doi:10.1038/s41467-023-37183-8.
|
[30] |
Chen M, Jiang X, Hu Q, et al. Toehold-Containing Three-Way Junction-Initiated Multiple Exponential Amplification and CRISPR/Cas14a Assistant Magnetic Separation Enhanced Visual Detection of Mycobacterium Tuberculosis. ACS Sens, 2024, 9(1):62-72. doi:10.1021/acssensors.3c01622.
|
[31] |
Lan H, Shu W, Jiang D, et al. Cas-based bacterial detection: recent advances and perspectives. Analyst, 2024, 149(5):1398-1415. doi:10.1039/d3an02120c.
pmid: 38357966
|
[32] |
Chen JS, Ma E, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science, 2018, 360(6387):436-439. doi:10.1126/science.aar6245.
pmid: 29449511
|
[33] |
Pandya K, Jagani D, Singh N. CRISPR-Cas Systems: Programmable Nuclease Revolutionizing the Molecular Diagnosis. Mol Biotechnol, 2024, 66(8):1739-1753. doi:10.1007/s12033-023-00819-7.
|
[34] |
Molina Vargas AM, Sinha S, Osborn R, et al. New design strategies for ultra-specific CRISPR-Cas13a-based RNA detection with single-nucleotide mismatch sensitivity. Nucleic Acids Res, 2024, 52(2):921-939. doi:10.1093/nar/gkad1132.
pmid: 38033324
|
[35] |
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science, 2017, 356(6336):438-442. doi:10.1126/science.aam9321.
pmid: 28408723
|