中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (9): 904-912.doi: 10.19982/j.issn.1000-6621.20230247
收稿日期:
2023-07-18
出版日期:
2023-09-10
发布日期:
2023-09-01
通信作者:
毕秀丽,Email:
Bi Xiuli(), Geng Hong, Jin Jin
Received:
2023-07-18
Online:
2023-09-10
Published:
2023-09-01
Contact:
Bi Xiuli, Email:摘要:
宿主先天性和适应性免疫应答在对抗结核分枝杆菌(Mycobacterium tuberculosis,MTB)感染中发挥着重要作用,而耐药性的产生亦与免疫应答相关。研究发现,肺部髓系细胞能够对MTB产生免疫应答,在保护宿主和炎症产生过程中均有参与作用。适应性免疫应答中的多种细胞类型能对MTB感染产生免疫应答,其中抗原特异性CD4+T细胞在控制MTB感染中发挥着主要作用。然而,在复杂的MTB感染环境中,不同的髓系细胞和CD4+T细胞也可能是MTB感染的主要参与者,能够介导病理反应的发生。因此,本文就不同髓系细胞(主要包括单核细胞、巨噬细胞、树突状细胞)和CD4+ T细胞在MTB感染中的双重作用进行综述。
中图分类号:
毕秀丽, 耿红, 金瑾. 髓系细胞和CD4+ T细胞在结核分枝杆菌感染和免疫病理中的作用[J]. 中国防痨杂志, 2023, 45(9): 904-912. doi: 10.19982/j.issn.1000-6621.20230247
Bi Xiuli, Geng Hong, Jin Jin. The role of myeloid system and CD4+T cells in Mycobacterium tuberculosis infection and immunopathology[J]. Chinese Journal of Antituberculosis, 2023, 45(9): 904-912. doi: 10.19982/j.issn.1000-6621.20230247
[1] |
Ogongo P, Tezera LB, Ardain A, et al. Tissue-resident-like CD4+ T cells secreting IL-17 control Mycobacterium tuberculosis in the human lung. J Clin Invest, 2021, 131(10): e142014. doi:10.1172/JCI142014.
doi: 10.1172/JCI142014 URL |
[2] |
Van Dis E, Fox DM, Morrison HM, et al. IFN-gamma-independent control of M.tuberculosis requires CD 4 T cell-derived GM-CSF and activation of HIF-1alpha. PLoS Pathog, 2022, 18(7):e1010721. doi:10.1371/journal.ppat.1010721.
doi: 10.1371/journal.ppat.1010721 URL |
[3] |
Joshi N, Walter JM, Misharin AV. Alveolar Macrophages. Cell Immunol, 2018, 330:86-90. doi:10.1016/j.cellimm.2018.01.005.
doi: S0008-8749(18)30005-4 pmid: 29370889 |
[4] |
Huang L, Nazarova EV, Russell DG. Mycobacterium tuberculosis: Bacterial Fitness within the Host Macrophage. Microbiol Spectr, 2019, 7(2):10. doi:10.1128/microbiolspec.BAI-0001-2019.
doi: 10.1128/microbiolspec.BAI-0001-2019 |
[5] |
Ufimtseva EG, Eremeeva NI, Umpeleva TV, et al. Mycobacterium tuberculosis Load in Host Cells and the Antibacterial Activity of Alveolar Macrophages Are Linked and Differentially Regulated in Various Lung Lesions of Patients with Pulmonary Tuberculosis. Int J Mol Sci, 2021, 22(7):3452. doi:10.3390/ijms22073452.
doi: 10.3390/ijms22073452 URL |
[6] |
Karanja CW, Yeboah KS, Sintim HO. Identification of a Mycobacterium tuberculosis Cyclic Dinucleotide Phosphodiesterase Inhibitor. ACS Infect Dis, 2021, 7(2):309-317. doi:10.1021/acsinfecdis.0c00444.
doi: 10.1021/acsinfecdis.0c00444 URL |
[7] |
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol, 2022, 12:891878. doi:10.3389/fcimb.2022.891878.
doi: 10.3389/fcimb.2022.891878 URL |
[8] |
Pajuelo D, Gonzalez-Juarbe N, Tak U, et al. NAD+ Depletion Triggers Macrophage Necroptosis, a Cell Death Pathway Exploited by Mycobacterium tuberculosis. Cell Rep, 2018, 24(2):429-440. doi:10.1016/j.celrep.2018.06.042.
doi: S2211-1247(18)30952-5 pmid: 29996103 |
[9] |
Pisu D, Huang L, Narang V, et al. Single cell analysis of M.tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med, 2021, 218(9):e20210615. doi:10.1084/jem.20210615.
doi: 10.1084/jem.20210615 URL |
[10] |
Chen Q, Hu C, Lu W, et al. Characteristics of alveolar macro-phages in bronchioalveolar lavage fluids from active tuberculosis patients identified by single-cell RNA sequencing. J Biomed Res, 2022, 36(3):167-180. doi:10.7555/JBR.36.20220007.
doi: 10.7555/JBR.36.20220007 URL |
[11] |
Mariotti S, Pardini M, Gagliardi MC, et al. Dormant Mycobacterium tuberculosis fails to block phagosome maturation and shows unexpected capacity to stimulate specific human T lymphocytes. J Immunol, 2013, 191(1):274-282. doi:10.4049/jimmunol.1202900.
doi: 10.4049/jimmunol.1202900 pmid: 23733870 |
[12] |
Lee J, Hartman M, Kornfeld H. Macrophage apoptosis in tuberculosis. Yonsei Med J, 2009, 50(1):1-11. doi:10.3349/ymj.2009.50.1.1.
doi: 10.3349/ymj.2009.50.1.1 pmid: 19259342 |
[13] |
Repasy T, Lee J, Marino S, et al. Intracellular bacillary burden reflects a burst size for Mycobacterium tuberculosis in vivo. PLoS Pathog, 2013, 9(2):e1003190. doi:10.1371/journal.ppat.1003190.
doi: 10.1371/journal.ppat.1003190 URL |
[14] |
Wolf AJ, Linas B, Trevejo-Nunez GJ, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol, 2007, 179(4):2509-2519. doi:10.4049/jimmunol.179.4.2509.
doi: 10.4049/jimmunol.179.4.2509 URL |
[15] |
Lafuse WP, Rajaram MVS, Wu Q, et al. Identification of an Increased Alveolar Macrophage Subpopulation in Old Mice That Displays Unique Inflammatory Characteristics and Is Permissive to Mycobacterium tuberculosis Infection. J Immunol, 2019, 203(8):2252-2264. doi:10.4049/jimmunol.1900495.
doi: 10.4049/jimmunol.1900495 URL |
[16] |
Abdissa K, Nerlich A, Beineke A, et al. Presence of Infected Gr-1intCD11bhiCD11cint Monocytic Myeloid Derived Suppressor Cells Subverts T Cell Response and Is Associated With Impaired Dendritic Cell Function in Mycobacterium avium-Infected Mice. Front Immunol, 2018, 9:2317. doi:10.3389/fimmu.2018.02317.
doi: 10.3389/fimmu.2018.02317 pmid: 30386330 |
[17] |
Zhai W, Wu F, Zhang Y, et al. The Immune Escape Mechanisms of Mycobacterium Tuberculosis. Int J Mol Sci, 2019, 20(2):340. doi:10.3390/ijms20020340.
doi: 10.3390/ijms20020340 URL |
[18] |
Lai R, Jeyanathan M, Afkhami S, et al. CD11b+ Dendritic Cell-Mediated Anti-Mycobacterium tuberculosis Th1 Activation Is Counterregulated by CD103+ Dendritic Cells via IL-10. J Immunol, 2018, 200(5):1746-1760. doi:10.4049/jimmunol.1701109.
doi: 10.4049/jimmunol.1701109 |
[19] |
Mayer-Barber KD, Andrade BB, Barber DL, et al. Innate and adaptive interferons suppress IL-1alpha and IL-1beta production by distinct pulmonary myeloid subsets during Mycobacterium tuberculosis infection. Immunity, 2011, 35(6):1023-1034. doi:10.1016/j.immuni.2011.12.002.
doi: 10.1016/j.immuni.2011.12.002 pmid: 22195750 |
[20] |
Kotze LA, Young C, Leukes VN, et al. Mycobacterium tuberculosis and myeloid-derived suppressor cells: Insights into caveolin rich lipid rafts. EBioMedicine, 2020, 53:102670. doi:10.1016/j.ebiom.2020.102670.
doi: 10.1016/j.ebiom.2020.102670 URL |
[21] |
Akter S, Chauhan KS, Dunlap MD, et al. Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Rep, 2022, 39(12):110983. doi:10.1016/j.celrep.2022.110983.
doi: 10.1016/j.celrep.2022.110983 URL |
[22] |
Anderson KG, Mayer-Barber K, Sung H, et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat Protoc, 2014, 9(1):209-222. doi:10.1038/nprot.2014.005.
doi: 10.1038/nprot.2014.005 pmid: 24385150 |
[23] |
De Trez C, Magez S, Akira S, et al. iNOS-producing inflammatory dendritic cells constitute the major infected cell type during the chronic Leishmania major infection phase of C57BL/ 6 resistant mice. PLoS Pathog, 2009, 5(6):e1000494. doi:10.1371/journal.ppat.1000494.
doi: 10.1371/journal.ppat.1000494 URL |
[24] |
Olson GS, Murray TA, Jahn AN, et al. Type I interferon decreases macrophage energy metabolism during mycobacterial infection. Cell Rep, 2021, 35(9):109195. doi:10.1016/j.celrep.2021.109195.
doi: 10.1016/j.celrep.2021.109195 URL |
[25] |
Thirunavukkarasu S, Ahmed M, Rosa BA, et al. Poly(ADP-ribose) polymerase 9 mediates early protection against Mycobacterium tuberculosis infection by regulating type I IFN production. J Clin Invest, 2023, 133(12):e158630. doi:10.1172/JCI158630.
doi: 10.1172/JCI158630 URL |
[26] |
Ravesloot-Chavez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol, 2021, 39:611-637. doi:10.1146/annu-rev-immunol-093019-010426.
doi: 10.1146/annurev-immunol-093019-010426 pmid: 33637017 |
[27] |
Cavalcante-Silva LHA, Almeida FS, Andrade AG, et al. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci, 2023, 24(14):11385. doi:10.3390/ijms241411385.
doi: 10.3390/ijms241411385 URL |
[28] |
Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol, 2017, 14(12):963-975. doi:10.1038/cmi.2017.88.
doi: 10.1038/cmi.2017.88 URL |
[29] |
Moreira-Teixeira L, Stimpson PJ, Stavropoulos E, et al. Type I IFN exacerbates disease in tuberculosis-susceptible mice by inducing neutrophil-mediated lung inflammation and NETosis. Nat Commun, 2020, 11(1):5566. doi:10.1038/s41467-020-19412-6.
doi: 10.1038/s41467-020-19412-6 pmid: 33149141 |
[30] |
Shah JA, Warr AJ, Graustein AD, et al. REL and BHLHE 40 Variants Are Associated with IL-12 and IL-10 Responses and Tuberculosis Risk. J Immunol, 2022, 208(6):1352-1361. doi:10.4049/jimmunol.2100671.
doi: 10.4049/jimmunol.2100671 URL |
[31] |
Daniel L, Counoupas C, Bhattacharyya ND, et al. L-selectin-dependent and -independent homing of naive lymphocytes through the lung draining lymph node support T cell response to pulmonary Mycobacterium tuberculosis infection. PLoS Pathog, 2023, 19(7):e1011460. doi:10.1371/journal.ppat.1011460.
doi: 10.1371/journal.ppat.1011460 URL |
[32] |
Blomgran R, Desvignes L, Briken V, et al. Mycobacterium tuberculosis inhibits neutrophil apoptosis, leading to delayed activation of naive CD 4 T cells. Cell Host Microbe, 2012, 11(1):81-90. doi:10.1016/j.chom.2011.11.012.
doi: 10.1016/j.chom.2011.11.012 pmid: 22264515 |
[33] |
Sudbury EL, Clifford V, Messina NL, et al. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect, 2020, 81(6):873-881. doi:10.1016/j.jinf.2020.09.032.
doi: 10.1016/j.jinf.2020.09.032 pmid: 33007340 |
[34] |
Park HS, Choi S, Back YW, et al. Mycobacterium tuberculosis RpfE-Induced Prostaglandin E 2 in Dendritic Cells Induces Th1/Th17 Cell Differentiation. Int J Mol Sci, 2021, 22(14):7535. doi:10.3390/ijms22147535.
doi: 10.3390/ijms22147535 URL |
[35] |
Grant NL, Kelly K, Maiello P, et al. Mycobacterium tuberculosis-Specific CD 4 T Cells Expressing Transcription Factors T-Bet or RORgammaT Associate with Bacterial Control in Granulomas. mBio, 2023, 14(3):e0047723. doi:10.1128/mbio.00477-23.
doi: 10.1128/mbio.00477-23 URL |
[36] |
Negi S, Pahari S, Das DK, et al. Curdlan Limits Mycobacterium tuberculosis Survival Through STAT-1 Regulated Nitric Oxide Production. Front Microbiol, 2019, 10:1173. doi:10.3389/fmicb.2019.01173.
doi: 10.3389/fmicb.2019.01173 URL |
[37] |
Scanga CA, Mohan VP, Yu K, et al. Depletion of CD4+ T cells causes reactivation of murine persistent tuberculosis despite continued expression of interferon gamma and nitric oxide synthase 2. J Exp Med, 2000, 192(3):347-358. doi:10.1084/jem.192.3.347.
doi: 10.1084/jem.192.3.347 pmid: 10934223 |
[38] |
Gallegos AM, van Heijst JW, Samstein M, et al. A gamma interferon independent mechanism of CD 4 T cell mediated control of M.tuberculosis infection in vivo. PLoS Pathog, 2011, 7(5):e1002052. doi:10.1371/journal.ppat.1002052.
doi: 10.1371/journal.ppat.1002052 URL |
[39] |
Aujla SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Semin Immunol, 2007, 19(6):377-382. doi:10.1016/j.smim.2007.10.009.
doi: 10.1016/j.smim.2007.10.009 pmid: 18054248 |
[40] |
Makatsa MS, Omondi FMA, Bunjun R, et al. Characterization of Mycobacterium tuberculosis-Specific Th 22 Cells and the Effect of Tuberculosis Disease and HIV Coinfection. J Immunol, 2022, 209(3):446-455. doi:10.4049/jimmunol.2200140.
doi: 10.4049/jimmunol.2200140 pmid: 35777848 |
[41] |
Imperiale BR, Garcia A, Minotti A, et al. Th22 response induced by Mycobacterium tuberculosis strains is closely related to severity of pulmonary lesions and bacillary load in patients with multi-drug-resistant tuberculosis. Clin Exp Immunol, 2021, 203(2):267-280. doi:10.1111/cei.13544.
doi: 10.1111/cei.13544 pmid: 33128773 |
[42] |
Bryson BD, Rosebrock TR, Tafesse FG, et al. Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nat Commun, 2019, 10(1):2329. doi:10.1038/s41467-019-10065-8.
doi: 10.1038/s41467-019-10065-8 pmid: 31133636 |
[43] |
Lovey A, Verma S, Kaipilyawar V, et al. Early alveolar macrophage response and IL-1R-dependent T cell priming determine transmissibility of Mycobacterium tuberculosis strains. Nat Commun, 2022, 13(1):884. doi:10.1038/s41467-022-28506-2.
doi: 10.1038/s41467-022-28506-2 |
[44] |
Hoft SG, Sallin MA, Kauffman KD, et al. The Rate of CD 4 T Cell Entry into the Lungs during Mycobacterium tuberculosis Infection Is Determined by Partial and Opposing Effects of Multiple Chemokine Receptors. Infect Immun, 2019, 87(6):e00841-18. doi:10.1128/IAI.00841-18.
doi: 10.1128/IAI.00841-18 |
[45] |
Grant NL, Maiello P, Klein E, et al. T cell transcription factor expression evolves over time in granulomas from Mycobacterium tuberculosis-infected cynomolgus macaques. Cell Rep, 2022, 39(7):110826. doi:10.1016/j.celrep.2022.110826.
doi: 10.1016/j.celrep.2022.110826 URL |
[46] |
Ferreira CM, Barbosa AM, Barreira-Silva P, et al. Early IL-10 promotes vasculature-associated CD4+ T cells unable to control Mycobacterium tuberculosis infection. JCI Insight, 2021, 6(21):e150060. doi:10.1172/jci.insight.150060.
doi: 10.1172/jci.insight.150060 URL |
[47] |
Park HS, Back YW, Jang IT, et al. Mycobacterium tuberculosis Rv2145c Promotes Intracellular Survival by STAT3 and IL-10 Receptor Signaling. Front Immunol, 2021, 12:666293. doi:10.3389/fimmu.2021.666293.
doi: 10.3389/fimmu.2021.666293 URL |
[48] |
McCaffrey EF, Donato M, Keren L, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol, 2022, 23(2):318-329. doi:10.1038/s41590-021-01121-x.
doi: 10.1038/s41590-021-01121-x pmid: 35058616 |
[49] |
Singh M, Vaughn C, Sasaninia K, et al. Understanding the Relationship between Glutathione, TGF-beta, and Vitamin D in Combating Mycobacterium tuberculosis Infections. J Clin Med, 2020, 9(9):2757. doi:10.3390/jcm9092757.
doi: 10.3390/jcm9092757 URL |
[50] |
Cardona P, Cardona PJ. Regulatory T Cells in Mycobacterium tuberculosis Infection. Front Immunol, 2019, 10:2139. doi:10.3389/fimmu.2019.02139.
doi: 10.3389/fimmu.2019.02139 pmid: 31572365 |
[51] |
Stringari LL, Covre LP, da Silva FDC, et al. Increase of CD4+CD25highFoxP3+ cells impairs in vitro human microbicidal activity against Mycobacterium tuberculosis during latent and acute pulmonary tuberculosis. PLoS Negl Trop Dis, 2021, 15(7):e0009605. doi:10.1371/journal.pntd.0009605.
doi: 10.1371/journal.pntd.0009605 URL |
[52] |
Artola-Boran M, Fallegger A, Priola M, et al. Mycobacterial infection aggravates Helicobacter pylori-induced gastric preneoplastic pathology by redirection of de novo induced Treg cells. Cell Rep, 2022, 38(6):110359. doi:10.1016/j.celrep.2022.110359.
doi: 10.1016/j.celrep.2022.110359 URL |
[53] |
Tonby K, Mortensen R, Ruhwald M, et al. KLRG1-Expressing CD 4 T Cells Are Reduced in Tuberculosis Patients Compared to Healthy Mycobacterium tuberculosis-Infected Subjects, but Increase With Treatment. J Infect Dis, 2019, 220(1):174-176. doi:10.1093/infdis/jiz056.
doi: 10.1093/infdis/jiz056 URL |
[54] |
Hu Z, Zhao HM, Li CL, et al. The Role of KLRG 1 in Human CD4+ T-Cell Immunity Against Tuberculosis. J Infect Dis, 2018, 217(9):1491-1503. doi:10.1093/infdis/jiy046.
doi: 10.1093/infdis/jiy046 URL |
[55] |
Ogishi M, Yang R, Aytekin C, et al. Inherited PD-1 deficiency underlies tuberculosis and autoimmunity in a child. Nat Med, 2021, 27(9):1646-1654. doi:10.1038/s41591-021-01388-5.
doi: 10.1038/s41591-021-01388-5 pmid: 34183838 |
[56] |
Day CL, Abrahams DA, Bunjun R, et al. PD-1 Expression on Mycobacterium tuberculosis-Specific CD 4 T Cells Is Associated With Bacterial Load in Human Tuberculosis. Front Immunol, 2018, 9:1995. doi:10.3389/fimmu.2018.01995.
doi: 10.3389/fimmu.2018.01995 URL |
[57] |
Tezera LB, Bielecka MK, Ogongo P, et al. Anti-PD-1 immunotherapy leads to tuberculosis reactivation via dysregulation of TNF-alpha. Elife, 2020, 9:e52668. doi:10.7554/eLife.52668.
doi: 10.7554/eLife.52668 URL |
[1] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[2] | 邱伟霞, 陈丽莉, 徐约丹, 潘宁, 邱霞霞, 郑泓, 金沈洁, 李会娟, 蒋贤高. 海分枝杆菌皮肤感染患者护理一例[J]. 中国防痨杂志, 2025, 47(4): 531-534. |
[3] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[4] | 李蕾蕾, 石磊, 王琳, 李洪伟, 徐立然, 逄宇, 宋言峥. HIV感染人群肺结节术后诊断为肺结核的临床特征分析[J]. 中国防痨杂志, 2025, 47(3): 266-273. |
[5] | 谭黄圣, 蓝志明, 付远飞, 赖居易, 冯华龙, 蒋勇, 邓鹏伟, 何升华. 颈椎布鲁氏菌感染一例[J]. 中国防痨杂志, 2025, 47(3): 380-383. |
[6] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[7] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[8] | 《脊柱结核并发HIV/AIDS患者诊断及治疗专家共识》编写组, 中国防痨协会骨关节结核专业分会, 中国性病艾滋病防治协会艾滋病外科专业委员会, 中国西部骨结核联盟, 中国华北骨结核联盟. 脊柱结核并发HIV/AIDS患者诊断及治疗专家共识(第2版)[J]. 中国防痨杂志, 2025, 47(1): 1-11. |
[9] | 张国钦, 曲婷, 孟庆琳, 周林, 刘二勇. 我国结核病合并HIV/AIDS双重感染防治策略的实施进展[J]. 中国防痨杂志, 2025, 47(1): 12-17. |
[10] | 李福栋, 马晓雪, 周建, 王大福, 张玥颖, 龚婷婷, 饶文, 洪峰, 李世军, 李进岚. 2018—2023年贵州省利福平敏感MTB/HIV双重感染患者流行特征及治疗转归分析[J]. 中国防痨杂志, 2025, 47(1): 36-43. |
[11] | 刘怡, 罗瑶, 李锋. 甘草酸二铵与替比夫定联用对肺结核患者合并乙型肝炎抗病毒感染的临床疗效分析[J]. 中国防痨杂志, 2024, 46(S2): 60-61. |
[12] | 午水东. 舒普深联合抗生素对重症肺部感染患者的疗效研究[J]. 中国防痨杂志, 2024, 46(S2): 91-93. |
[13] | 张明明. 中医内科治疗肺部真菌感染的效果分析[J]. 中国防痨杂志, 2024, 46(S2): 106-108. |
[14] | 刘鹏, 韩萍. 杏苏止嗽汤联合呼吸导引操治疗新型冠状病毒感染轻、中型患者临床研究[J]. 中国防痨杂志, 2024, 46(S2): 162-164. |
[15] | 肖聪, 蒋余强, 钟丹. 急性期糖皮质激素联合阿司匹林和丙种球蛋白治疗高危评分患儿川崎病合并肺炎支原体感染的疗效分析[J]. 中国防痨杂志, 2024, 46(S2): 172-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||