中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (5): 446-453.doi: 10.19982/j.issn.1000-6621.20220535
收稿日期:
2023-01-19
出版日期:
2023-05-10
发布日期:
2023-04-25
通信作者:
逄宇
E-mail:pangyupound@163.com
基金资助:
Li Shanshan1, Wang Yufeng2, Shu Wei3, Pang Yu1()
Received:
2023-01-19
Online:
2023-05-10
Published:
2023-04-25
Contact:
Pang Yu
E-mail:pangyupound@163.com
Supported by:
摘要:
结核病的精准防控需要快速、准确的实验室诊断技术。自1882年罗伯特·科赫发现结核分枝杆菌以来,结核病诊断技术经历了从传统的病原学诊断到免疫学和分子生物学诊断的巨大飞跃,然而这种诊断技术的发展仍然与实现2035年终止结核病的宏伟目标存在一定差距。作者在梳理既往结核病诊断技术研发进展的基础上,围绕结核病防控的核心诊断需求,探究未来实验室诊断的重要发展管线。
中图分类号:
李姗姗, 王玉峰, 舒薇, 逄宇. 结核病实验室诊断技术研发新进展[J]. 中国防痨杂志, 2023, 45(5): 446-453. doi: 10.19982/j.issn.1000-6621.20220535
Li Shanshan, Wang Yufeng, Shu Wei, Pang Yu. Progress and reflections on development of laboratory diagnostic technology for tuberculosis[J]. Chinese Journal of Antituberculosis, 2023, 45(5): 446-453. doi: 10.19982/j.issn.1000-6621.20220535
[1] | World Health Organization.Global tuberculosis report 2022. Geneva: World Health Organization, 2022. |
[2] | World Health Organization. WHO operational handbook on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detention, 2021 update. Geneva: World Health Organi-zation, 2021. |
[3] |
逄宇, 王玉峰, 高兴辉, 等. 结核病实验室检测产品和技术应用进展. 中国临床新医学, 2021, 14(1):23-34. doi:10.3969/j.issn.1674-3806.2021.01.05.
doi: 10.3969/j.issn.1674-3806.2021.01.05 |
[4] | 中华人民共和国国家卫生和计划生育委员会.WS 288—2017 肺结核诊断. 2017-11-09. |
[5] |
Azman AS, Golub JE, Dowdy DW. How much is tuberculosis screening worth? Estimating the value of active case finding for tuberculosis in South Africa, China, and India. BMC Med, 2014, 12:216. doi:10.1186/s12916-014-0216-0.
doi: 10.1186/s12916-014-0216-0 pmid: 25358459 |
[6] |
Chen JO, Qiu YB, Rueda ZV, et al. Role of community-based active case finding in screening tuberculosis in Yunnan province of China. Infect Dis Poverty, 2020, 9(1):7. doi:10.1186/s40249-020-0625-6.
doi: 10.1186/s40249-020-0625-6 |
[7] |
Rangaka MX, Cavalcante SC, Marais BJ, et al. Controlling the seedbeds of tuberculosis: diagnosis and treatment of tuberculosis infection. Lancet, 2015, 386(10010): 2344-2353. doi:10.1016/S0140-6736(15)00323-2.
doi: 10.1016/S0140-6736(15)00323-2 pmid: 26515679 |
[8] |
Steingart KR, Henry M, Ng V, et al. Fluorescence versus conventional sputum smear microscopy for tuberculosis: a systematic review. Lancet Infect Dis, 2006, 6:570-581. doi:10.1016/S1473-3099(06)70578-3.
doi: 10.1016/S1473-3099(06)70578-3 pmid: 16931408 |
[9] |
Anthony RM, Kolk AH, Kuijper S, et al. Light emitting diodes for auramine O fluorescence microscopic screening of Mycobacterium tuberculosis. Int J Tuberc Lung Dis, 2006, 10:1060-1062.
pmid: 16964802 |
[10] |
Bennedsen J, Larsen SO. Examination for tubercle bacili by fluorescence microscopy. Scand J Respir Dis, 1966, 47:114-120.
pmid: 4161476 |
[11] |
Middlebrook G, Cohn ML. Bacteriology of tuberculosis: Laboratory Methods. Am J Pub Health, 1958, 48(7):844-853. doi:10.2105/ajph.48.7.844.
doi: 10.2105/ajph.48.7.844 |
[12] |
DeLand FH, Wagner RN Jr. Early detection of bacterial growth with carbon-14 labeled glucose. Radiology, 1969, 92(1):154-155. doi:10.1148/92.1.154.
doi: 10.1148/92.1.154 pmid: 5762072 |
[13] |
Wilson SM, McNerney R, Nye PM, et al. Progress toward a simplified polymerase chain reaction and its application to diagnosis of tuberculosis. J Clin Microbiol, 1993, 31(4):776-782. doi:10.1128/jcm.31.4.776-782.
doi: 10.1128/jcm.31.4.776-782.1993 pmid: 8463386 |
[14] |
Noordhoek GT, Kolk AH, Bjune G, et al. Sensitivity and specificity of PCR for detection of Mycobacterium tuberculosis: a blind comparison study among seven laboratories. J Clin Microbiol, 1994, 32(2):277-284. doi:10.1128/jcm.32.2.277-284.1994.
doi: 10.1128/jcm.32.2.277-284.1994 pmid: 8150935 |
[15] | World Health Organization. The use of loop-mediated isothermal amplification (TB-LAMP) for the diagnosis of pulmonary tuberculosis. Policy guidance. Geneva: World Health Organization, 2016. |
[16] | World Health Organization. Molecular line probe assay for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Policy statement. Geneva: World Health Organization, 2008. |
[17] | World Health Organization. Policy statement: automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF system. Geneva: World Health Organization, 2011. |
[18] | World Health Organization. WHO meeting report of a technical expert consultation:non-inferiority analysis of Xpert MTF/RIF Ultra compared to Xpert MTB/RIF. Geneva: World Health Organization, 2017. |
[19] | World Health Organization. Molecular assays intended as initial tests for the diagnosis of pulmonary and extrapulmonary TB and rifampicin resistance in adults and children: rapid communication. Policy update. Geneva: World Health Organization, 2020. |
[20] | World Health Organization. Commercial sero-diagnostic tests for diagnosis of tuberculosis: policy statement. Geneva: World Health Organization, 2011. |
[21] | World Health Organization. WHO warns against the use of inaccurate blood tests for active tuberculosis. Geneva: World Health Organization, 2011. |
[22] | World Health Organization. The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV. Policy guidance. Geneva: World Health Organization, 2015. |
[23] | World Health Organization. Latent tuberculosis infection: Updated and consolidated guidelines for programmatic management. Geneva: World Health Organization, 2018. |
[24] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: Diagnosis—Tests for tuberculosis infection. Geneva: World Health Organization, 2022. |
[25] |
Heifets L, Sanchez T. New agar medium for testing susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Clin Microbiol, 2000, 38(4):1498-1501. doi:10.1128/JCM.38.4.1498-1501.2000.
doi: 10.1128/JCM.38.4.1498-1501.2000 pmid: 10747133 |
[26] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis-rapid diagnostics for tuberculosis detection, 2021 update. Geneva: World Health Organi-zation, 2021. |
[27] |
Yan LP, Tang SJ, Yang Y, et al. A Large Cohort Study on the Clinical Value of Simultaneous Amplification and Testing for the Diagnosis of Pulmonary Tuberculosis. Medicine (Baltimore), 2016, 95(4):e2597. doi:10.1097/MD.0000000000002597.
doi: 10.1097/MD.0000000000002597 URL |
[28] |
Zhang ZM, Du J, Liu T, et al. EasyNAT MTC assay: A simple, rapid, and low-cost cross-priming amplification method for the detection of Mycobacterium tuberculosis suitable for point-of-care testing. Emerg Microbes Infect, 2021, 10(1):1530-1535. doi:10.1080/22221751.2021.1959271.
doi: 10.1080/22221751.2021.1959271 URL |
[29] |
Quan ST, Jiang TT, Jiao WW, et al. A Novel Cross-Priming Amplification-Based Assay for Tuberculosis Diagnosis in Children Using Gastric Aspirate. Front Microbiol, 2022, 13:819654. doi:10.3389/fmicb.2022.819654.
doi: 10.3389/fmicb.2022.819654 URL |
[30] | 马晓光, 李辉, 石洁, 等. 荧光PCR探针熔解曲线法检测结核分枝杆菌耐异烟肼突变. 现代预防医学, 2013, 40(22):4201-4207. |
[31] |
王峰, 崔运勇, 胡思玉, 等. 实时聚合酶联反应熔解曲线法快速检测耐药多结核病分枝杆菌. 中华结核和呼吸杂志, 2011, 34(12):888-892. doi:10.3760/cma.j.jssn.1001-0939.2011.12.003.
doi: 10.3760/cma.j.jssn.1001-0939.2011.12.003 |
[32] |
Sun Y, Gao L, Xia H, et al. Accuracy of molecular diagnostic tests for drug-resistant tuberculosis detection in China: a systematic review. Int J Tuberc Lung Dis, 2019, 23(8):931-942. doi:10.5588/ijtld.18.0550.
doi: 10.5588/ijtld.18.0550 pmid: 31533884 |
[33] | World Health Organization. Use of alternative interferon-gamma release assays for the diagnosis of TB infection: WHO policy statement. Geneva: World Health Organization, 2022. |
[34] |
You E, Kim MH, Lee WI, et al. Evaluation of IL-2, IL-10, IL-17 and IP-10 as potent discriminative markers for active tuberculosis among pulmonary tuberculosis suspects. Tuberculosis, 2016, 99:100-108. doi:10.1016/j.tube.2016.04.009.
doi: 10.1016/j.tube.2016.04.009 pmid: 27450011 |
[35] |
Pankhurst LJ, Del Ojo Elias C, Votintseva AA, et al. Rapid, comprehensive, and afordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med, 2016, 4(1):49-58. doi:10.1016/S2213-2600(15)00466-X.
doi: 10.1016/S2213-2600(15)00466-X pmid: 26669893 |
[36] |
Finci I, Albertini A, Merker M, et al. Investigating resistance in clinical Mycobacterium tuberculosis complex isolates with genomic and phenotypic antimicrobial susceptibility testing: a multicentre observational study. Lancet Microbe, 2022, 3(9): e672-e682. doi:10.1016/S2666-5247(22)00116-1.
doi: 10.1016/S2666-5247(22)00116-1. URL |
[37] |
Walker TM, Miotto P, Köser CU, et al. The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: A genotypic analysis. Lancet Microbe, 2022, 3(4):e265-e273. doi:10.1016/S2666-5247(21)00301-3.
doi: 10.1016/S2666-5247(21)00301-3. URL |
[38] |
Broger T, Nicol MP, Sigal GB, et al. Diagnostic accuracy of 3 urine lipoarabinomannan tuberculosis assays in HIV-negative outpatients. J Clin Invest, 2020, 130(11):5756-5764. doi:10.1172/JCI140461.
doi: 10.1172/JCI140461 URL |
[39] |
Liu C, Zhao Z, Fan J, et al. Quantification of circulating Mycobacterium tuberculosis antigen peptides allows rapid diagnosis of active disease and treatment monitoring. Proc Natl Acad Sci U S A, 2017, 114(15):3969-3974. doi:10.1073/pnas.1621360114.
doi: 10.1073/pnas.1621360114 URL |
[40] |
Liu C, Lyon CJ, Bu Y, et al. Clinical Evaluation of a Blood Assay to Diagnose Paucibacillary Tuberculosis via Bacterial Antigens. Clin Chem, 2018, 64(5):791-800. doi:10.1373/clinchem.2017.273698.
doi: 10.1373/clinchem.2017.273698 pmid: 29348166 |
[41] |
Seifert M, Vargas E, Ruiz-Valdepeñas Montiel V, et al. Detection and quantification of Mycobacterium tuberculosis antigen CFP 10 in serum and urine for the rapid diagnosis of active tuberculosis disease. Sci Rep, 2021, 11(1):19193. doi:10.1038/s41598-021-98471-1.
doi: 10.1038/s41598-021-98471-1 pmid: 34584117 |
[42] |
Phunpae P, Chanwong S, Tayapiwatana C, et al. Rapid diagnosis of tuberculosis by identification of Antigen 85 in mycobacterial culture system. Diagn Microbiol Infect Dis, 2014, 78 (3): 242-248. doi:10.1016/j.diagmicrobio.2013.11.028.
doi: 10.1016/j.diagmicrobio.2013.11.028 URL |
[43] |
Peláez EC, Estevez MC, Mongui A, et al. Detection and Quantification of HspX Antigen in Sputum Samples Using Plasmonic Biosensing: Toward a Real Point-of-Care (POC) for Tuberculosis Diagnosis. ACS Infec Dis, 2020, 6(5):1110-1120. doi:10.1021/acsinfecdis.9b00502.
doi: 10.1021/acsinfecdis.9b00502 URL |
[44] |
Cao XJ, Li YP, Wang JY, et al. MPT 64 assays for the rapid detection of Mycobacterium tuberculosis. BMC Infect Dis, 2021, 21:336. doi:10.1186/s12879-021-06022-w.
doi: 10.1186/s12879-021-06022-w |
[45] |
Gupta RK, Turner CT, Venturini C, et al. Concise whole blood transcriptional signatures for incipient tuberculosis: a systematic review and patient-level pooled meta-analysis. Lancet Respir Med, 2020, 8(4):395-406. doi:10.1016/s2213-2600(19)30282-6.
doi: 10.1016/S2213-2600(19)30282-6 pmid: 31958400 |
[46] |
Sutherland SJ, Spuy VG, Gindeh A, et al. Diagnostic Accuracy of the Cepheid 3-gene Host Response Fingerstick Blood Test in a Prospective, Multi-site Study: Interim Results. Clin Infect Dis, 2022, 74(12): 2136-2141. doi:10.1093/cid/ciab839.
doi: 10.1093/cid/ciab839 URL |
[47] |
Ahmad R, Xie L, Pyle M, et al. A rapid triage test for active pulmonary tuberculosis in adult patients with persistent cough. Sci Transl Med, 2019, 11(515): eaaw8287. doi:10.1126/scitranslmed.aaw8287.
doi: 10.1126/scitranslmed.aaw8287 URL |
[48] |
Zetola NM, Modongo C, Matsiri O, et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. J Infect, 2017, 74(4):367-376. doi:10.1016/j.jinf.2016.12.006.
doi: S0163-4453(16)30336-X pmid: 28017825 |
[49] |
Coronel Teixeira R, Rodríguez M, Jiménez de Romero N, et al. The potential of a portable, point-of-care electronic nose to diagnose tuberculosis. J Infect, 2017, 75(5):441-447. doi:10.1016/j.jinf.2017.08.003.
doi: S0163-4453(17)30260-8 pmid: 28804027 |
[1] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[2] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[3] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
[4] | 邱伟霞, 陈丽莉, 徐约丹, 潘宁, 邱霞霞, 郑泓, 金沈洁, 李会娟, 蒋贤高. 海分枝杆菌皮肤感染患者护理一例[J]. 中国防痨杂志, 2025, 47(4): 531-534. |
[5] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会, 结核病防治分会基础和临床学部. 结核性腹膜炎多学科诊疗专家共识[J]. 中国防痨杂志, 2025, 47(3): 243-257. |
[6] | 段鸿飞, 陶勇. 《眼内结核诊断规范》团体标准解读[J]. 中国防痨杂志, 2025, 47(3): 258-261. |
[7] | 李蕾蕾, 石磊, 王琳, 李洪伟, 徐立然, 逄宇, 宋言峥. HIV感染人群肺结节术后诊断为肺结核的临床特征分析[J]. 中国防痨杂志, 2025, 47(3): 266-273. |
[8] | 贾辉, 景辉, 凌晓洁, 王燕, 李学政. GeneXpert MTB/RIF Ultra检测痰液样本对新发肺结核的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 298-304. |
[9] | 石玉如, 谷德健, 吴静, 刘婷, 秦令寒, 岳莉, 戚应杰. 靶向捕获测序技术和宏基因组二代测序技术检测肺泡灌洗液中结核分枝杆菌的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 305-311. |
[10] | 杨子仪, 陈素婷. 贝达喹啉耐药及耐药诊断的研究进展[J]. 中国防痨杂志, 2025, 47(3): 374-379. |
[11] | 谭黄圣, 蓝志明, 付远飞, 赖居易, 冯华龙, 蒋勇, 邓鹏伟, 何升华. 颈椎布鲁氏菌感染一例[J]. 中国防痨杂志, 2025, 47(3): 380-383. |
[12] | 严广璇, 王雪钰, 王宇津, 兰汀隆, 聂文娟. 宏基因组二代测序对疑似骨关节结核患者的诊断价值[J]. 中国防痨杂志, 2025, 47(2): 175-180. |
[13] | 邱勇, 权卓, 屈榕, 田发君, 李蒙, 王更生, 王娅, 郭明成, 高谦. 县级实验室结核病检测方法的诊断效果分析: 一项基于真实世界数据的回顾性研究[J]. 中国防痨杂志, 2025, 47(2): 181-188. |
[14] | 《脊柱结核并发HIV/AIDS患者诊断及治疗专家共识》编写组, 中国防痨协会骨关节结核专业分会, 中国性病艾滋病防治协会艾滋病外科专业委员会, 中国西部骨结核联盟, 中国华北骨结核联盟. 脊柱结核并发HIV/AIDS患者诊断及治疗专家共识(第2版)[J]. 中国防痨杂志, 2025, 47(1): 1-11. |
[15] | 张国钦, 曲婷, 孟庆琳, 周林, 刘二勇. 我国结核病合并HIV/AIDS双重感染防治策略的实施进展[J]. 中国防痨杂志, 2025, 47(1): 12-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||