中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (3): 374-379.doi: 10.19982/j.issn.1000-6621.20240391
收稿日期:
2024-09-06
出版日期:
2025-03-10
发布日期:
2025-02-27
通信作者:
陈素婷,Email:基金资助:
Received:
2024-09-06
Online:
2025-03-10
Published:
2025-02-27
Contact:
Chen Suting, Email:Supported by:
摘要:
贝达喹啉是一种二芳基喹啉化合物,是用于治疗利福平耐药结核病和耐多药结核病的新型抗结核药物。自从批准使用以来,贝达喹啉已显著提高了耐药结核病的治疗效果。然而,随着该药物的广泛使用,贝达喹啉耐药发生及耐药监测成为了一个备受关注的临床问题。笔者分析了贝达喹啉耐药分子机制、耐药表型及基因型的诊断方法,以期为贝达喹啉的临床使用及耐药监测管理提供参考。
中图分类号:
杨子仪, 陈素婷. 贝达喹啉耐药及耐药诊断的研究进展[J]. 中国防痨杂志, 2025, 47(3): 374-379. doi: 10.19982/j.issn.1000-6621.20240391
Yang Ziyi, Chen Suting. Research progress on bedaquiline resistance and drug resistance diagnosis[J]. Chinese Journal of Antituberculosis, 2025, 47(3): 374-379. doi: 10.19982/j.issn.1000-6621.20240391
[1] | 胡鑫洋, 高静韬. 世界卫生组织《2024年全球结核病报告》解读. 结核与肺部疾病杂志, 2024, 5(6):500-504. doi:10.19983/j.issn.2096-8493.2024164. |
[2] | Lin Y, Harries AD, Kumar AM, et al. Management of diabetes-tuberculosis: a guide to the essential practice. France: International Union Against Tuberculosis and Lung Disease, 2019. |
[3] |
Nguyen TVA, Anthony RM, Bañuls AL, et al. Bedaquiline Resistance: Its Emergence, Mechanism, and Prevention. Clin Infect Dis, 2018, 66(10):1625-1630. doi:10.1093/cid/cix992.
pmid: 29126225 |
[4] | Zuur MA, Bolhuis MS, Anthony R, et al. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol, 2016, 12(5):509-521. doi:10.1517/17425255.2016.1162785. |
[5] | World Health Organization. Global tuberculosis report 2023. World Health Organization, 2023. |
[6] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 4, Treatment: drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2020. |
[7] |
Chahine EB, Karaoui LR, Mansour H. Bedaquiline: A Novel Diarylquinoline for Multidrug-Resistant Tuberculosis. Ann Pharmacother, 2014, 48(1):107-115. doi:10.1177/1060028013504087.
pmid: 24259600 |
[8] | Worley MV, Estrada SJ. Bedaquiline: A Novel Antitubercular Agent for the Treatment of Multidrug-Resistant Tuberculosis. Pharmacotherapy, 2014, 34(11):1187-11197. doi:10.1002/phar.1482. |
[9] | Shaw ES, Stoker NG, Potter JL, et al. Bedaquiline: what might the future hold?. Lancet Microbe, 2024, 5(12):100909. doi:10.1016/S2666-5247(24)00149-6. |
[10] | 张玉霞, 熊瑜, 常婷婷, 等. 含贝达喹啉方案治疗耐药肺结核的不良反应分析. 中国防痨杂志, 2022, 44(3): 239-245. doi:10.19982/j.issn.1000-6621.20210702. |
[11] | Veziris N, Bernard C, Guglielmetti L, et al. Rapid emergence of Mycobacterium tuberculosis bedaquiline resistance: lessons to avoid repeating past errors. Eur Respir J, 2017, 49(3):1601719. doi:10.1183/13993003.01719-2016. |
[12] |
Ismail NA, Omar SV, Joseph L, et al. Defining Bedaquiline Susceptibility, Resistance, Cross-Resistance and Associated Genetic Determinants: A Retrospective Cohort Study. EBioMedicine, 2018, 28: 136-142. doi:10.1016/j.ebiom.2018.01.005.
pmid: 29337135 |
[13] | Olayanju O, Limberis J, Esmail A, et al. Long-term bedaquiline-related treatment outcomes in patients with extensively drug-resistant tuberculosis from South Africa. Eur Respir J, 2018, 51(5):1800544. doi:10.1183/13993003.00544-2018. |
[14] |
Pai H, Ndjeka N, Mbuagbaw L, et al. Bedaquiline safety, efficacy, utilization and emergence of resistance following treatment of multidrug-resistant tuberculosis patients in South Africa: a retrospective cohort analysis. BMC Infect Dis, 2022, 22(1):870. doi:10.1186/s12879-022-07861-x.
pmid: 36414938 |
[15] | Barilar I, Fernando T, Utpatel C, et al. Emergence of bedaqui-line-resistant tuberculosis and of multidrug-resistant and extensively drug-resistant Mycobacterium tuberculosis strains with rpoB Ile491Phe mutation not detected by Xpert MTB/RIF in Mozambique: a retrospective observational study. Lancet Infect Dis, 2024, 24(3):297-307. doi:10.1016/S1473-3099(23)00498-X. |
[16] |
Derendinger B, Dippenaar A, De Vos M, et al. Bedaquiline resistance in patients with drug-resistant tuberculosis in Cape Town, South Africa: a retrospective longitudinal cohort study. Lancet Microbe, 2023, 4(12):e972-e982. doi:10.1016/S2666-5247(23)00172-6.
pmid: 37931638 |
[17] | Chesov E, Chesov D, Maurer FP, et al. Emergence of beda-quiline resistance in a high tuberculosis burden country. Eur Respir J, 2022, 59(3):2100621. doi:10.1183/13993003.00621-2021. |
[18] | Liu Y, Gao M, Du J, et al. Reduced Susceptibility of Mycobacterium tuberculosis to Bedaquiline During Antituberculosis Treatment and Its Correlation With Clinical Outcomes in China. Clin Infect Dis, 2021, 73(9):e3391-e3397. doi:10.1093/cid/ciaa1002. |
[19] | 张书, 雷卉, 王为娜, 等. 2020—2021年凉山州4个彝族聚居县297株结核分枝杆菌耐药及菌株谱系分析. 预防医学情报杂志, 2024, 12: 1-9. doi:10.19971/j.cnki.1006-4028.230601. |
[20] | 田娜, 董巧琰, 初乃惠. 抗结核药物贝达喹啉与氯法齐明交叉耐药机制及其与治疗结局相关性. 中国临床医生杂志, 2024, 52(3): 283-285. doi:10.3969/j.issn.2095-8552.2024.03.008. |
[21] | Cook GM, Hards K, Vilchèze C, et al. Energetics of Respiration and Oxidative Phosphorylation in Mycobacteria. Microbiol Spectr, 2014, 2(3):10.1128/microbiolspec.MGM2-0015-2013. doi:10.1128/microbiolspec.MGM2-0015-2013. |
[22] |
Jones D. Tuberculosis success. Nat Rev Drug Discov, 2013, 12(3):175-176. doi:10.1038/nrd3957.
pmid: 23449293 |
[23] | Koul A, Dendouga N, Vergauwen K, et al. Diarylquinolines target subunitc of mycobacterial ATP synthase. Nat Chem Biol, 2007, 3(6):323-324. doi:10.1038/nchembio884. |
[24] |
Andries K, Verhasselt P, Guillemont J, et al. A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science, 2005, 307(5707): 223-227. doi:10.1126/science.1106753.
pmid: 15591164 |
[25] |
Petrella S, Cambau E, Chauffour A, et al. Genetic Basis for Natural and Acquired Resistance to the Diarylquinoline R207910 in Mycobacteria. Antimicrob Agents Chemother, 2006, 50(8):2853-2856. doi:10.1128/AAC.00244-06.
pmid: 16870785 |
[26] | 向煜, 杨淑柳, 武娅宁, 等. 基于新疆维吾尔自治区南疆地区169株结核分枝杆菌探讨基因缺失对贝达喹啉的耐药机制. 疾病监测, 2024, 39(5): 639-646. doi:10.3784/jbjc.202311200629. |
[27] |
Milano A, Pasca MR, Provvedi R, et al. Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL 5 efflux system. Tuberculosis, 2009, 89(1): 84-90. doi:10.1016/j.tube.2008.08.003.
pmid: 18851927 |
[28] |
Kadura S, King N, Nakhoul M, et al. Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. J Antimicrob Chemother, 2020, 75(8):2031-2043. doi:10.1093/jac/dkaa136.
pmid: 32361756 |
[29] |
Almeida D, Ioerger T, Tyagi S, et al. Mutations in pepQ Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2016, 60(8):4590-4599. doi:10.1128/AAC.00753-16.
pmid: 27185800 |
[30] |
Zhang S, Chen J, Cui P, et al. Identification of novel mutations associated with clofazimine resistance in Mycobacterium tuberculosis: Table 1. J Antimicrob Chemother, 2015, 70(9):2507-2510. doi:10.1093/jac/dkv150.
pmid: 26045528 |
[31] | Perumal R, Bionghi N, Nimmo C, et al. Baseline and treatment-emergent bedaquiline resistance in drug-resistant tuberculosis: a systematic review and meta-analysis. Eur Respir J, 2023, 62(6):2300639. doi:10.1183/13993003.00639-2023. |
[32] | Köser CU, Miotto P, Ismail N, et al. A composite reference standard is needed for bedaquiline antimicrobial susceptibility testing for Mycobacterium tuberculosis complex. Eur Respir J, 2024, 64(1):2400391. doi:10.1183/13993003.00391-2024. |
[33] | 宋媛媛, 夏辉, 赵雁林. 结核分枝杆菌表型药物敏感性试验临界浓度设定发展历程. 中国防痨杂志, 2023, 45(7): 631-638. doi:10.19982/j.issn.1000-6621.20230153. |
[34] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3. Diagnosis: rapid diagnostics for tuberculosis detection. Third edition. Geneva: World Health Organization, 2024. |
[35] | Witney AA, Cosgrove CA, Arnold A, et al. Clinical use of whole genome sequencing for Mycobacterium tuberculosis. BMC Medicine, 2016, 14(1): 46. doi:10.1186/s12916-016-0598-2. |
[36] |
Nimmo C, Bionghi N, Cummings MJ, et al. Opportunities and limitations of genomics for diagnosing bedaquiline-resistant tuberculosis: a systematic review and individual isolate meta-analysis. Lancet Microbe, 2024, 5(2): e164-e172. doi:10.1016/S2666-5247(23)00317-8.
pmid: 38215766 |
[37] | Updated Guidelines for the Use of Nucleic Acid Amplification Tests in the Diagnosis of Tuberculosis. JAMA, 2009, 301(10): 1014. doi:10.1001/jama.2009.148. |
[38] |
Anagoni S, Mudhigeti N, Alladi M, et al. Effect of delay in processing and storage temperature on diagnosis of SARS-CoV-2 by RTPCR testing. Indian J Med Microbiol, 2022, 40(3):427-432. doi:10.1016/j.ijmmb.2022.03.005.
pmid: 35393127 |
[39] | Jin W, Wang J, Yang X. Analysis of three cases with false positive PCR results of non tuberculosis mycobacterium. Respir Med Case Rep, 2023, 47:101973. doi:10.1016/j.rmcr.2023.101973. |
[40] | Lin CR, Wang HY, Lin TW, et al. Development of a two-step nucleic acid amplification test for accurate diagnosis of the Mycobacterium tuberculosis complex. Sci Rep, 2021, 11(1):5750. doi:10.1038/s41598-021-85160-2. |
[41] | Long S. In pursuit of sensitivity: Lessons learned from viral nucleic acid detection and quantification on the Raindance ddPCR platform. Methods, 2022, 201: 82-95. doi:10.1016/j.ymeth.2021.04.008. |
[42] | MacLean E, Kohli M, Weber SF, et al. Advances in Molecular Diagnosis of Tuberculosis. J Clin Microbiol, 2020, 58(10):e01582-19. doi:10.1128/JCM.01582-19. |
[43] |
Pradhan S, Gautam K, Pant V. Variation in Laboratory Reports: Causes other than Laboratory Error. JNMA J Nepal Med Assoc, 2022, 60(246):222-224. doi:10.31729/jnma.6022.
pmid: 35210649 |
[44] | Reinicke M, Braun SD, Diezel C, et al. From Shadows to Spotlight: Enhancing Bacterial DNA Detection in Blood Samples through Cutting-Edge Molecular Pre-Amplification. Antibiotics, 2024, 13(2): 161. doi:10.3390/antibiotics13020161. |
[45] | World Health Organization. Catalogue of Mutations in Mycobacterium Tuberculosis Complex and Their Association with Drug Resistance Second Edition. Geneva: World Health Organization, 2023. |
[46] | Del Giovane S, Bagheri N, Di Pede AC, et al. Challenges and perspectives of CRISPR-based technology for diagnostic applications. TrAC Trends in Analytical Chemistry, 2024, 172: 117594. doi:10.1016/j.trac.2024.117594. |
[47] | Yuan X, Sui G, Zhang D, et al. Recent developments and trends of automatic nucleic acid detection systems. J Biosaf Biosecur, 2022, 4(1):54-58. doi:10.1016/j.jobb.2022.02.001. |
[48] | Colman RE, Mace A, Seifert M, et al. Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Med, 2019, 16(4):e1002794. doi:10.1371/journal.pmed.1002794. |
[49] | Murphy SG, Smith C, Lapierre P, et al. Direct detection of drug-resistant Mycobacterium tuberculosis using targeted next generation sequencing. Front Public Health, 2023, 11:1206056. doi:10.3389/fpubh.2023.1206056. |
[1] | 杜润泽, 艾尔帕提·玉素甫, 董士铭, 徐韬, 蔡晓宇, 王婷, 牙克甫·阿卜力孜, 盛伟斌, 买尔旦·买买提. Lasso-logistic回归在感染性脊柱炎鉴别诊断中的应用[J]. 中国防痨杂志, 2025, 47(S1): 1-4. |
[2] | 尹相玉, 李金星, 马刚, 刘文玉, 蔡继飞. 超声引导下胸膜活检联合Xpert MTB/RIF对结核性胸膜炎的诊断价值[J]. 中国防痨杂志, 2025, 47(S1): 5-8. |
[3] | 田琦, 李春杨. 抗病毒联合抗结核药物治疗艾滋病合并肺结核的临床疗效观察[J]. 中国防痨杂志, 2025, 47(S1): 9-11. |
[4] | 王泉, 古丽比克·木拉提, 陈清波, 张亚丽, 许苗, 杨婷, 常炜, 李媛媛, 马瑞瑛. 新疆维吾尔自治区结核分枝杆菌基因型多样性及其耐药特征研究[J]. 中国防痨杂志, 2025, 47(S1): 12-16. |
[5] | 杜润泽, 董士铭, 艾尔帕提·玉素甫, 徐韬, 蔡晓宇, 王婷, 牙克甫·阿卜力孜, 盛伟斌, 买尔旦·买买提. 布鲁氏菌性脊柱炎的精确诊断:多因素Logistic回归预测模型的构建与验证[J]. 中国防痨杂志, 2025, 47(S1): 17-20. |
[6] | 刘敏, 祁丹, 石峰, 李兵, 郝瑞霞, 王东, 白俊. ARIMA-SVM组合模型在肺结核发病预测中的应用[J]. 中国防痨杂志, 2025, 47(S1): 21-25. |
[7] | 李雅惠, 刘珂伟, 戈启萍, 杨晓丽, 王慧芳. 四例煤工尘肺合并非结核分枝杆菌感染临床特点分析[J]. 中国防痨杂志, 2025, 47(S1): 26-30. |
[8] | 王泉, 马瑞瑛, 杨婷, 张亚丽, 古丽比克·木拉提. 新疆地区非结核分枝杆菌感染流行性及风险因素研究[J]. 中国防痨杂志, 2025, 47(S1): 31-35. |
[9] | 李春晶, 李莉, 梁雪薇, 袁嘉瑞, 林静. CT三维重建在骨结核术后效果评估中的价值研究[J]. 中国防痨杂志, 2025, 47(S1): 47-49. |
[10] | 申福国, 杨钰, 孔维丽, 石寒冰, 姜云飞, 于霁. 气管涂层支架的生物相容性及抗结核分枝杆菌性能研究[J]. 中国防痨杂志, 2025, 47(S1): 66-68. |
[11] | 刘燕, 高海恋, 孙丰珍. 淄博市第一医院非结核分枝杆菌病患者菌种分布情况研究[J]. 中国防痨杂志, 2025, 47(S1): 69-70. |
[12] | 周巍, 任鑫. 探讨多层螺旋CT在肺结核诊断和鉴别诊断中的临床应用价值[J]. 中国防痨杂志, 2025, 47(S1): 71-73. |
[13] | 卢继永. 青年女性肺结核患者抗结核治疗前后性激素水平变化规律分析[J]. 中国防痨杂志, 2025, 47(S1): 90-92. |
[14] | 杨景云, 熊媛, 雷霖涵, 赵省婷, 赵得荣, 苏艳, 徐根深, 胡加耀. 增强T2 FLAIR在儿童结核性脑膜炎中的诊断价值研究[J]. 中国防痨杂志, 2025, 47(S1): 93-95. |
[15] | 何成, 刘阳, 廖庆峰, 简佳庆, 付小刚, 简勇. 电子支气管镜下冷冻联合药物治疗肉芽增殖型支气管结核的疗效分析[J]. 中国防痨杂志, 2025, 47(S1): 134-137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||