中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (3): 291-294.doi: 10.3969/j.issn.1000-6621.2021.03.017
收稿日期:
2020-12-07
出版日期:
2021-03-10
发布日期:
2021-03-03
通信作者:
徐贵生
E-mail:guishengxu123@163.com
基金资助:
ZHANG Chun-xia, XU Gui-sheng(), SHI Jin-yan
Received:
2020-12-07
Online:
2021-03-10
Published:
2021-03-03
Contact:
XU Gui-sheng
E-mail:guishengxu123@163.com
摘要:
耐多药结核病的防治对于结核病的防控具有重要意义,已成为结核病防治的难点和热点问题。早期对结核病患者进行耐多药检测能够提高耐多药结核病患者的治疗成功率。耐多药结核病的诊断方法包括传统的培养方法及新型分子生物学诊断方法。作者对耐多药结核病的诊断方法进行综述,以期为耐多药结核病防治提供科学依据。
张春霞, 徐贵生, 时金艳. 耐多药结核病诊断方法研究进展[J]. 中国防痨杂志, 2021, 43(3): 291-294. doi: 10.3969/j.issn.1000-6621.2021.03.017
ZHANG Chun-xia, XU Gui-sheng, SHI Jin-yan. Research progress on diagnostic methods of multidrug-resistant tuberculosis[J]. Chinese Journal of Antituberculosis, 2021, 43(3): 291-294. doi: 10.3969/j.issn.1000-6621.2021.03.017
[1] | 杨松, 严晓峰. 贝达喹啉治疗耐多药与广泛耐药结核病的现状和展望. 结核病与肺部健康杂志, 2019,8(4):249-252. doi: 10.3969/j.issn.2095-3755.2019.04.004. |
[2] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[3] | 刘一典, 桂徐蔚, 申晓娜, 等. 2019年《ATS/CDC/ERS/IDSA临床实践指南:耐药结核病治疗》解读及与我国《耐药结核病化学治疗指南(2019年)》对比. 中国防痨杂志, 2020,42(1):12-16. doi: 10.3969/j.issn.1000-6621.2020.01.005. |
[4] |
Bolhuis MS, van der Werf TS, Akkerman OW. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N Engl J Med, 2020,382(24):2376-2377. doi: 10.1056/NEJMc2009939.
doi: 10.1056/NEJMc2009939 URL pmid: 32521141 |
[5] | 中国防痨协会. 耐药结核病化学治疗指南(2019年简版). 中国防痨杂志, 2019,41(10):1025-1073. doi: 10.3969/j.issn.1000-6621.2019.10.001. |
[6] | 朱庆义. 结核分枝杆菌耐多药基因及其检测新技术. 中华临床实验室管理电子杂志, 2020,8(2):65-70. doi: 10.3877/cma.j.issn.2095-5820.2020.02.001. |
[7] |
Lange C, Chesov D, Heyckendorf J, et al. Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology, 2018,23(7):656-673. doi: 10.1111/resp.13304.
doi: 10.1111/resp.13304 URL pmid: 29641838 |
[8] |
Schön T, Miotto P, Köser CU, et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin Microbiol Infect, 2017,23(3):154-160. doi: 10.1016/j.cmi.2016.10.022.
doi: 10.1016/j.cmi.2016.10.022 URL pmid: 27810467 |
[9] | World Health Organization. Guidelines for surveillance of drug resistance in tuberculosis. 4th ed. Geneva: World Health Organization, 2009. |
[10] |
Rancoita PMV, Cugnata F, Gibertoni Cruz AL, et al. Validating a 14-Drug Microtiter Plate Containing Bedaquiline and Delamanid for Large-Scale Research Susceptibility Testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother, 2018,62(9):e00344-18. doi: 10.1128/AAC.00344-18.
doi: 10.1128/AAC.00344-18 URL pmid: 29941636 |
[11] | 李辉. 液体培养方法在结核病和耐药结核病诊断中的应用. 中华检验医学杂志, 2014,37(8):637-638. doi: 10.3760/cma.j.issn.1009-9158.2014.08.019. |
[12] |
Sivaramakrishnan G, Subramanyam B, Kumar MP, et al. Validation of bedaquiline drug-susceptibility testing by BACTEC MGIT 960 system for Mycobacterium tuberculosis. Int J Mycobacteriol, 2019,8(4):329-332. doi: 10.4103/ijmy.ijmy_151_19.
doi: 10.4103/ijmy.ijmy_151_19 URL pmid: 31793501 |
[13] |
Opota O, Mazza-Stalder J, Greub G, et al. The rapid molecular test Xpert MTB/RIF ultra: towards improved tuberculosis diagnosis and rifampicin resistance detection. Clin Microbiol Infect, 2019,25(11):1370-1376. doi: 10.1016/j.cmi.2019.03.021.
doi: 10.1016/j.cmi.2019.03.021 URL pmid: 30928564 |
[14] | World Health Organization. Molecular line probe assays for rapid screening of patients at risk of multidrug-resistant tuberculosis (MDR-TB). Geneva: World Health Organization, 2008. |
[15] | World Health Organization. The use of molecular line probe assays for the detection of resistance to isoniazid and rifampicin. Geneva: World Health Organization, 2016. |
[16] | World Health Organization. WHO consolidated guidelines on tuberculosis. Module 3: diagnosis—rapid diagnostics for tuberculosis detection. Geneva: World Health Organization, 2020. |
[17] | Lee JH, Jo KW, Shim TS. Correlation between GenoType MTBDRplus Assay and Phenotypic Susceptibility Test for Prothionamide in Patients with Genotypic Isoniazid Resistance. Tuberc Respir Dis (Seoul), 2019,82(2):143-150. doi: 10.4046/trd.2018.0027. |
[18] |
Siddiqui S, Brooks MB, Malik AA, et al. Evaluation of GenoType MTBDRplus for the detection of drug-resistant Mycobacterium tuberculosis on isolates from Karachi, Pakistan. PLoS One, 2019,14(8):e0221485. doi: 10.1371/journal.pone.0221485.
doi: 10.1371/journal.pone.0221485 URL pmid: 31425565 |
[19] |
Rufai SB, Umay K, Singh PK, et al. Performance of Genotype MTBDRsl V2.0 over the Genotype MTBDRsl V1 for detection of second line drug resistance: An Indian perspective. PLoS One, 2020,15(3):e0229419. doi: 10.1371/journal.pone.0229419.
URL pmid: 32130233 |
[20] |
Yasemin A, Ahmad S, Afzal S, et al. Evaluation of GeneXpert MTB/RIF Assay for Detection of Pulmonary Tuberculosis on Sputum Samples. J Coll Physicians Surg Pak, 2019,29(1):66-69. doi: 10.29271/jcpsp.2019.01.66.
doi: 10.29271/jcpsp.2019.01.66 URL pmid: 30630573 |
[21] |
Shao L, Qiu C, Zheng L, et al. Comparison of diagnostic accuracy of the GeneXpert Ultra and cell-free nucleic acid assay for tuberculous meningitis: A multicentre prospective study. Int J Infect Dis, 2020,98:441-446. doi: 10.1016/j.ijid.2020.06.076.
URL pmid: 32599283 |
[22] |
Ali IF, Babak F, Fazlollah MS, et al. Rapid detection of MDR-Mycobacterium tuberculosis using modified PCR-SSCP from clinical Specimens. Asian Pac J Trop Biomed, 2014,4(Suppl 1):S165-170. doi: 10.12980/APJTB.4.2014C1186.
doi: 10.12980/APJTB.4.2014C1186 URL pmid: 25183075 |
[23] |
Choi W, Lee J, Cho E, et al. Accurate and effective multidrug-resistant Mycobacterium tuberculosis detection method using gap-filling ligation coupled with high-resolution capillary electrophoresis-based single strand conformation polymorphism. Sci Rep, 2017,7:46090. doi: 10.1038/srep46090.
doi: 10.1038/srep46090 URL pmid: 28422112 |
[24] |
Tahmasebi P, Farnia P, Sheikholslami F, et al. Rapid identification of extensively and extremely drug resistant tuberculosis from multidrug resistant strains; using PCR-RFLP and PCR-SSCP. Iran J Microbiol, 2012,4(4):165-170.
URL pmid: 23205246 |
[25] | 李栋梁, 侯瑞生, 王侃, 等. PCR-SSCP法检测结核分枝杆菌耐药基因突变分析. 中国卫生检验杂志, 2014,24(21):3127-3128. |
[26] |
Coll F, McNerney R, Preston MD, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0 URL pmid: 26019726 |
[27] | Doyle RM, Burgess C, Williams R, et al. Direct Whole-Genome Sequencing of Sputum Accurately Identifies Drug-Resistant Mycobacterium tuberculosis Faster than MGIT Culture Sequencing. J Clin Microbiol, 2018,56(8):e00666-18. doi: 10.1128/JCM.00666-18. |
[28] |
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 1998,393(6685):537-544. doi: 10.1038/31159.
doi: 10.1038/31159 URL pmid: 9634230 |
[29] |
Roa MB, Tablizo FA, Morado EKD, et al. Whole-genome sequencing and single nucleotide polymorphisms in multidrug-resistant clinical isolates of Mycobacterium tuberculosis from the Philippines. J Glob Antimicrob Resist, 2018,15:239-245. doi: 10.1016/j.jgar.2018.08.009.
doi: 10.1016/j.jgar.2018.08.009 URL pmid: 30130640 |
[30] |
Gröschel MI, Walker TM, van der Werf TS, et al. Pathogen-based precision medicine for drug-resistant tuberculosis. PLoS Pathog, 2018,14(10):e1007297. doi: 10.1371/journal.ppat.1007297.
doi: 10.1371/journal.ppat.1007297 URL pmid: 30335850 |
[31] |
Makhado NA, Matabane E, Faccin M, et al. Outbreak of multidrug-resistant tuberculosis in South Africa undetected by WHO-endorsed commercial tests: an observational study. Lancet Infect Dis, 2018,18(12):1350-1359. doi: 10.1016/S1473-3099(18)30496-1.
doi: 10.1016/S1473-3099(18)30496-1 URL pmid: 30342828 |
[32] |
Tagliani E, Hassan MO, Waberi Y, et al. Culture and Next-generation sequencing-based drug susceptibility testing unveil high levels of drug-resistant-TB in Djibouti: results from the first national survey. Sci Rep, 2017,7(1):17672. doi: 10.1038/s41598-017-17705-3.
doi: 10.1038/s41598-017-17705-3 URL pmid: 29247181 |
[33] |
Colman RE, Mace A, Seifert M, et al. Whole-genome and targeted sequencing of drug-resistant Mycobacterium tuberculosis on the iSeq100 and MiSeq: A performance, ease-of-use, and cost evaluation. PLoS Med, 2019,16(4):e1002794. doi: 10.1371/journal.pmed.1002794.
doi: 10.1371/journal.pmed.1002794 URL pmid: 31039166 |
[34] |
Tyler AD, Christianson S, Knox NC, et al. Comparison of Sample Preparation Methods Used for the Next-Generation Sequencing of Mycobacterium tuberculosis. PLoS One, 2016,11(2):e0148676. doi: 10.1371/journal.pone.0148676.
doi: 10.1371/journal.pone.0148676 URL pmid: 26849565 |
[35] |
Daniyarov A, Molkenov A, Rakhimova S, et al. Whole genome sequence data of Mycobacterium tuberculosis XDR strain, isolated from patient in Kazakhstan. Data Brief, 2020,33:106416. doi: 10.1016/j.dib.2020.106416.
doi: 10.1016/j.dib.2020.106416 URL pmid: 33102665 |
[36] | Rosse IC, Assis JG, Oliveira FS, et al. Whole genome sequencing of Guzerá cattle reveals genetic variants in candidate genes for production, disease resistance, and heat tolerance. Mamm Genome, 2017,28(1/2):66-80. doi: 10.1007/s00335-016-9670-7. |
[37] |
Ko DH, Lee EJ, Lee SK, et al. Application of next-generation sequencing to detect variants of drug-resistant Mycobacterium tuberculosis: genotype-phenotype correlation. Ann Clin Microbiol Antimicrob, 2019,18(1):2. doi: 10.1186/s12941-018-0300-y.
doi: 10.1186/s12941-018-0300-y URL pmid: 30606210 |
[1] | 朱明智, 邵燕琴, 范大鹏, 刘立宾, 梅宾, 戴玲珊, 蔡龙. 尿液脂阿拉伯甘露聚糖抗原检测对肺外结核的诊断价值[J]. 中国防痨杂志, 2025, 47(4): 471-476. |
[2] | 罗莉, 罗林紫, 尹曲华, 周磊, 卢志斌, 丁衍, 肖阳宝. 淋巴结瘘型气管支气管结核的支气管镜下诊疗进展[J]. 中国防痨杂志, 2025, 47(4): 505-512. |
[3] | 中国人民解放军总医院第八医学中心结核病医学部, 《中国防痨杂志》编辑委员会, 中国医疗保健国际交流促进会, 结核病防治分会基础和临床学部. 结核性腹膜炎多学科诊疗专家共识[J]. 中国防痨杂志, 2025, 47(3): 243-257. |
[4] | 段鸿飞, 陶勇. 《眼内结核诊断规范》团体标准解读[J]. 中国防痨杂志, 2025, 47(3): 258-261. |
[5] | 贾辉, 景辉, 凌晓洁, 王燕, 李学政. GeneXpert MTB/RIF Ultra检测痰液样本对新发肺结核的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 298-304. |
[6] | 石玉如, 谷德健, 吴静, 刘婷, 秦令寒, 岳莉, 戚应杰. 靶向捕获测序技术和宏基因组二代测序技术检测肺泡灌洗液中结核分枝杆菌的诊断价值[J]. 中国防痨杂志, 2025, 47(3): 305-311. |
[7] | 杨子仪, 陈素婷. 贝达喹啉耐药及耐药诊断的研究进展[J]. 中国防痨杂志, 2025, 47(3): 374-379. |
[8] | 严广璇, 王雪钰, 王宇津, 兰汀隆, 聂文娟. 宏基因组二代测序对疑似骨关节结核患者的诊断价值[J]. 中国防痨杂志, 2025, 47(2): 175-180. |
[9] | 邱勇, 权卓, 屈榕, 田发君, 李蒙, 王更生, 王娅, 郭明成, 高谦. 县级实验室结核病检测方法的诊断效果分析: 一项基于真实世界数据的回顾性研究[J]. 中国防痨杂志, 2025, 47(2): 181-188. |
[10] | 赵悦, 王昊然, 程美锦, 王伟, 梁瑞霞, 黄海荣. 涂片阳性/Xpert阴性结果早期预测临床标本中存在非结核分枝杆菌的可靠性[J]. 中国防痨杂志, 2025, 47(1): 61-65. |
[11] | 解慧, 吴娇娇. 痰涂片结核分枝杆菌检查和抗原胶体金法检验应用于肺结核的价值[J]. 中国防痨杂志, 2024, 46(S2): 32-34. |
[12] | 朱元子, 焦荣红. 肿瘤标志物和细胞因子联合检测对早期肺腺癌的诊断价值[J]. 中国防痨杂志, 2024, 46(S2): 62-64. |
[13] | 张芃. γ-干扰素释放试验在肺结核诊断中的临床应用价值[J]. 中国防痨杂志, 2024, 46(S2): 74-75. |
[14] | 杨景云, 熊媛, 雷霖涵, 赵省婷, 苏艳, 徐根深, 王绍婷, 赵得荣. 磁共振增强T2 FLAIR序列在结核性脑膜炎中的诊断价值及疗效评估研究[J]. 中国防痨杂志, 2024, 46(S2): 86-87. |
[15] | 苗建来, 梁如钰. PCR在肺结核诊断中的应用研究[J]. 中国防痨杂志, 2024, 46(S2): 94-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||