中国防痨杂志 ›› 2025, Vol. 47 ›› Issue (9): 1093-1104.doi: 10.19982/j.issn.1000-6621.20250234
中国防痨协会影像专业分会, 中华医学会结核病学分会, 中国防痨协会标准化专业分会, 中国防痨协会结核病控制专业分会
收稿日期:
2025-05-29
出版日期:
2025-09-10
发布日期:
2025-08-27
基金资助:
Imaging Professional Branch of Chinese Antituberculosis Association , Society of Tuberculosis, Chinese Medical Association , Standardization Professional Branch of Chinese Antituberculosis Association , Tuberculosis Control Professional Branch of Chinese Antituberculosis Association
Received:
2025-05-29
Online:
2025-09-10
Published:
2025-08-27
Supported by:
摘要:
胸部影像学检查是肺结核筛查和诊断的重要工具。计算机辅助检测(computer-aided detection,CAD)技术的发展为应用胸部影像学检查进行肺结核的主动发现带来新契机。本共识由中国防痨协会影像专业分会、中华医学会结核病学分会、中国防痨协会标准化专业分会和中国防痨协会结核病控制专业分会联合制定,并得到《中国防痨杂志》期刊社的支持。本共识在国际实践指南平台注册,制订过程遵循方法学原则,由多领域专家协作、结合世界卫生组织相关技术指南和我国应用实践完成。本共识阐述了CAD工作原理,介绍了国内外15款基于胸部X线平片(chest X-ray,CXR)的肺结核CAD软件性能;给出了CXR-CAD在医疗机构就诊患者以及社区和重点场所人群的肺结核筛查中的应用推荐;介绍了基于CT的CAD在肺结核诊断中的研发进展;提出了目前CAD在肺结核患者主动发现中存在的局限性及未来研究方向。
中图分类号:
中国防痨协会影像专业分会, 中华医学会结核病学分会, 中国防痨协会标准化专业分会, 中国防痨协会结核病控制专业分会. 胸部影像学检查人工智能辅助读片技术在肺结核患者发现中的应用专家共识[J]. 中国防痨杂志, 2025, 47(9): 1093-1104. doi: 10.19982/j.issn.1000-6621.20250234
Imaging Professional Branch of Chinese Antituberculosis Association , Society of Tuberculosis, Chinese Medical Association , Standardization Professional Branch of Chinese Antituberculosis Association , Tuberculosis Control Professional Branch of Chinese Antituberculosis Association . Expert consensus on the application of artificial intelligence assisted image reading technology in the detection of pulmonary tuberculosis patients in chest imaging examination[J]. Chinese Journal of Antituberculosis, 2025, 47(9): 1093-1104. doi: 10.19982/j.issn.1000-6621.20250234
[1] | Hwang EJ, Jeong WG, David PM, et al. AI for detection of tuberculosis: implications for global health. Radiol Artif Intell, 2024, 6(2):e230327. doi:10.1148/ryai.230327. |
[2] | World Health Organization. Chest radiography in tuberculosis detection: summary of current WHO recommendations and guidance on programmatic approaches. Geneva: World Health Organization, 2016. |
[3] | World Health Organization. WHO consolidated guidelines on tuberculosis: module 2: screening: systematic screening for tuberculosis disease. Geneva: World Health Organization, 2021. |
[4] | Stop TB Partnership and FIND. AI products for tuberculosis healthcare[EB/OL].[2025-04-06]. https://www.ai4hlth.org/products/. |
[5] | Qin ZZ, Van der Walt M, Moyo S, et al. Computer-aided detection of tuberculosis from chest radiographs in a tuberculosis prevalence survey in South Africa: external validation and modelled impacts of commercially available artificial intelligence software. Lancet Digit Health, 2024, 6(9):e605-e613. doi:10.1016/S2589-7500(24)00118-3. |
[6] | 国家疾病预防控制局, 国家卫生健康委员会, 国家发展和改革委员会, 等. 关于印发《全国结核病防治规划(2024—2030年)》的通知[EB/OL].(2024-11-28)[2025-03-28]. https://www.gov.cn/zhengce/zhengceku/202412/content_6991217.htm. |
[7] | 李多, 吕平欣. 推动人工智能技术在肺结核影像领域的发展和运用. 中国防痨杂志, 2024, 46(3):253-259. doi:10.19982/j.issn.1000-6621.20240013. |
[8] |
Elliott A, Pirruccello JP. Machine learning-based markers for CAD. Lancet, 2023, 402(10397):182-183. doi:10.1016/S0140-6736(23)01061-9.
pmid: 37453747 |
[9] | Chan HP, Hadjiiski LM, Samala RK. Computer-aided diagnosis in the era of deep learning. Med Phys, 2020, 47(5):e218-e227. doi:10.1002/mp.13764. |
[10] |
Takahashi R, Kajikawa Y. Computer-aided diagnosis: a survey with bibliometric analysis. Int J Med Inform, 2017, 101:58-67. doi:10.1016/j.ijmedinf.2017.02.004.
pmid: 28347448 |
[11] | Zhang L, Weng TP, Wang HY, et al. Patient pathway analysis of tuberculosis diagnostic delay: a multicentre retrospective cohort study in China. Clin Microbiol Infect, 2021, 27(7): 1000-1006. doi:10.1016/j.cmi.2020.12.031. |
[12] | 国家呼吸内科医疗质量控制中心, 中华医学会结核病学分会, 中国防痨协会结核病控制专业分会, 等. 综合医疗机构肺结核早期发现临床实践指南. 结核与肺部疾病杂志, 2024, 5(1): 1-14. doi:10.19982/j.issn.1000-6621.20230428. |
[13] | 王艳, 洪创跃, 房宏霞, 等. 综合医疗机构呼吸科住院患者结核病筛查的研究. 中华结核和呼吸杂志, 2022, 45(12):1209-1213. doi:10.3760/cma.j.cn112147-20220720-00613. |
[14] | Yang Y, Xia L, Liu P, et al. A prospective multicenter clinical research study validating the effectiveness and safety of a chest X-ray-based pulmonary tuberculosis screening software JF CXR-1 built on a convolutional neural network algorithm. Front Med (Lausanne), 2023, 10:1195451. doi:10.3389/fmed.2023.1195451. |
[15] | Qin ZZ, Ahmed S, Sarker MS, et al. Tuberculosis detection from chest X-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms. Lancet Digit Health, 2021, 3: e543-e554. doi:10.1016/S2589-7500(21)00116-3. |
[16] |
Nabulsi Z, Sellergren A, Jamshy S, et al. Deep learning for distinguishing normal versus abnormal chest radiographs and generalization to two unseen diseases tuberculosis and COVID-19. Sci Rep, 2021, 11(1):15523. doi:10.1038/s41598-021-93967-2.
pmid: 34471144 |
[17] | 许杰, 王小义, 夏丽, 等. 基于人工智能的远程肺结核影像辅助诊断应用研究. 中国数字医学, 2021, 16(8):98-100. doi:10.3969/j.issn.1673-7571.2021.08.023. |
[18] | Choi SY, Choi A, Baek SE, et al. Effect of multimodal diagnostic approach using deep learning-based automated detection algorithm for active pulmonary tuberculosis. Sci Rep, 2023, 13(1):19794. doi:10.1038/s41598-023-47146-0. |
[19] | Nijiati M, Zhang Z, Abulizi A, et al. Deep learning assistance for tuberculosis diagnosis with chest radiography in low-resource settings. J Xray Sci Technol, 2021, 29(5):785-796. doi:10.3233/XST-210894. |
[20] | 熊章龙, 苏东红, 莫启章, 等. 广西基层医疗卫生机构卫生技术人员职业能力现状及岗位能力需求的调查与思考. 养生保健指南, 2021(36):287-288. |
[21] | 陈曦, 贺晓新, 高志东, 等. 北京市区(县)社区结核病防治医务人员工作现状调查结果评价. 中国防痨杂志, 2015, 37(2):183-188. doi:10.3969/j.issn.1000-6621.2015.02.013. |
[22] | 梁胜翔. 我国西部地区基层医疗卫生机构基本公共卫生服务人员核心能力建设研究. 重庆:中国人民解放军陆军军医大学, 2020. doi:10.27001/d.cnki.gtjyu.2020.000024. |
[23] | Innes AL, Martinez A, Gao X, et al. Computer-aided detection for chest radiography to improve the quality of tuberculosis diagnosis in vietnam’s district health facilities: an implementation study. Trop Med Infect Dis, 2023, 8(11):488. doi:10.3390/tropicalmed8110488. |
[24] | Tavaziva G, Harris M, Abidi SK, et al. Chest X-ray analysis with deep learning-based software as a triage test for pulmonary tuberculosis: an individual patient data meta-analysis of diagnostic accuracy. Clin Infect Dis, 2022, 74(8):1390-1400. doi:10.1093/cid/ciab639. |
[25] | 中华人民共和国医师法[EB/OL]. (2021-08-20)[2025-03-28]. http://www.npc.gov.cn/npc/c2/c30834/202108/t20210820_313104.html. |
[26] | Park J, Hwang EJ, Lee JH, et al. Identification of active pulmonary tuberculosis among patients with positive interferon-gamma release assay results: value of a deep learning-based computer-aided detection system in different scenarios of implementation. J Thorac Imaging, 2023, 38(3):145-153. doi:10.1097/RTI.0000000000000691. |
[27] | Mezrich JL. Is artificial intelligence (ai) a pipe dream? why legal issues present significant hurdles to AI autonomy. AJR Am J Roentgenol, 2022, 219(1):152-156. doi:10.2214/AJR.21.27224. |
[28] |
Jaremko JL, Azar M, Bromwich R, et al. Canadian association of radiologists white paper on ethical and legal issues related to artificial intelligence in radiology. Can Assoc Radiol J, 2019, 70(2):107-118. doi:10.1016/j.carj.2019.03.001.
pmid: 30962048 |
[29] |
Hwang EJ, Goo JM, Yoon SH, et al. Use of artificial intelligence-based software as medical devices for chest radiography: a position paper from the Korean society of thoracic radiology. Korean J Radiol, 2021, 22(11):1743-1748. doi:10.3348/kjr.2021.0544.
pmid: 34564966 |
[30] | Yuen CM, Puma D, Millones AK, et al. Identifying barriers and facilitators to implementation of community-based tuberculosis active case finding with mobile X-ray units in Lima, Peru: a RE-AIM evaluation. BMJ Open, 2021, 11(7): e050314. doi:10.1136/bmjopen-2021-050314. |
[31] | Okada K, Yamada N, Takayanagi K, et al. Applicability of artificial intelligence-based computer-aided detection (AI-CAD) for pulmonary tuberculosis to community-based active case finding. Trop Med Health, 2024, 52(1): 2. doi:10.1186/s41182-023-00560-6. |
[32] |
Dakulala P, Kal M, Honjepari A, et al. Evaluation of a population-wide, systematic screening initiative for tuberculosis on Daru island, Western Province, Papua New Guinea. BMC Public Health, 2024, 24(1): 959. doi:10.1186/s12889-024-17918-y.
pmid: 38575948 |
[33] | 王晓林, 王晓炜, 雷娟, 等. 宁夏回族自治区肺结核人工智能影像筛查系统的应用. 中国数字医学, 2020, 15(4): 39-41. doi:10.3969/j.issn.1673-7571.2020.04.012. |
[34] |
Codlin AJ, Dao TP, Vo LNQ, et al. Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis. Sci Rep, 2021, 11(1): 23895. doi:10.1038/s41598-021-03265-0.
pmid: 34903808 |
[35] |
Wali A, Safdar N, Manair R, et al. Early TB case detection by community-based mobile X-ray screening and Xpert testing in Balochistan. Public Health Action, 2021, 11(4): 174-179. doi:10.5588/pha.21.0050.
pmid: 34956844 |
[36] | Velen K, Sathar F, Hoffmann CJ, et al. Digital chest X-ray with computer-aided detection for tuberculosis screening within correctional facilities. Ann Ame Thoracic Society, 2022, 19(8): 1313-1319. doi:10.1513/AnnalsATS.202103-380OC. |
[37] |
Jordan AM, Podewils LJ, Castro KG, et al. Prevalence and risk factors of tuberculosis disease in South African correctional facilities in 2015. Int J Tuberc Lung Dis, 2019, 23(11):1198-1204. doi:10.5588/ijtld.18.0782.
pmid: 31718756 |
[38] | World Health Organization, UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases. Determining the local calibration of computer-assisted detection (CAD) thresholds and other parameters: a toolkit to support the effective use of CAD for TB screening. Geneva: World Health Organization, 2021. |
[39] | Vanobberghen F, Keter AK, Jacobs BKM, et al. Computer-aided detection thresholds for digital chest radiography interpretation in tuberculosis diagnostic algorithms. ERJ Open Res, 2024, 10(1): 00508-02023. doi:10.1183/23120541.00508-2023. |
[40] | Liao Q, Feng H, Li Y, et al. Evaluation of an artificial intelligence (AI) system to detect tuberculosis on chest X-ray at a pilot active screening project in Guangdong, China in 2019. J Xray Sci Technol, 2022, 30(2):221-230. doi:10.3233/XST-211019. |
[41] |
Fehr J, Konigorski S, Olivier S, et al. Computer-aided interpretation of chest radiography reveals the spectrum of tuberculosis in rural South Africa. NPJ Digit Med, 2021, 4(1): 106. doi:10.1038/s41746-021-00471-y.
pmid: 34215836 |
[42] |
Koesoemadinata RC, Kranzer K, Livia R, et al. Computer-assisted chest radiography reading for tuberculosis screening in people living with diabetes mellitus. Int J Tuberc Lung Dis, 2018, 22(9): 1088-1094. doi:10.5588/ijtld.17.0827.
pmid: 30092877 |
[43] |
Habib SS, Rafiq S, Zaidi SMA, et al. Evaluation of computer aided detection of tuberculosis on chest radiography among people with diabetes in Karachi Pakistan. Sci Rep, 2020, 10(1): 6276. doi:10.1038/s41598-020-63084-7.
pmid: 32286389 |
[44] | Kagujje M, Kerkhoff AD, Nteeni M, et al. The performance of computer-aided detection digital chest X-ray reading technolo-gies for triage of active tuberculosis among persons with a history of previous tuberculosis. Clin Infect Dis, 2023, 76(3): e894-e901. doi:10.1093/cid/ciac679. |
[45] | Crowder R, Thangakunam B, Andama A, et al. Diagnostic accuracy of TB screening tests in a prospective multinational cohort: chest-X-ray with computer-aided detection, Xpert TB host response, and C-reactive protein. Clin Infect Dis, 2024, 7:ciae549. doi:10.1093/cid/ciae549. |
[46] | Scott AJ, Limbada M, Perumal T, et al. Integrating molecular and radiological screening tools during community-based active case-finding for tuberculosis and COVID-19 in southern Africa. Int J Infect Dis, 2024, 145:107081. doi:10.1016/j.ijid.2024.107081. |
[47] | Gelaw SM, Kik SV, Ruhwald M, et al. Diagnostic accuracy of three computer-aided detection systems for detecting pulmonary tuberculosis on chest radiography when used for screening: analysis of an international, multicenter migrants screening study. PLoS Glob Public Health, 2023, 3(7): e0000402. doi:10.1371/journal.pgph.0000402. |
[48] | Mungai B, Ong’angò J, Ku CC, et al. Accuracy of computer-aided chest X-ray in community-based tuberculosis screening: Lessons from the 2016 Kenya National Tuberculosis Prevalence Survey. PLoS Glob Public Health, 2022, 2(11): e0001272. doi:10.1371/journal.pgph.0001272. |
[49] | 王前, 何金戈, 李玉红, 等. 人工智能自动阅片技术用于HIV/AIDS人群结核病主动筛查效果的研究. 中国防痨杂志, 2021, 43(6): 557-561. doi:10.3969/j.issn.1000-6621.2021.06.007. |
[50] | Innes AL, Martinez A, Hoang GL, et al. Active case finding to detect symptomatic and subclinical pulmonary tuberculosis disease: implementation of computer-aided detection for chest radiography in Viet Nam. Western Pac Surveill Response J, 2024, 15(4):1-12. doi:10.5365/wpsar.2024.15.4.1118. |
[51] | Nijiati M, Zhou R, Damaola M, et al. Deep learning based CT images automatic analysis model for active/non-active pulmonary tuberculosis differential diagnosis. Front Mol Biosc, 2022, 9:1086047. doi:10.3389/fmolb.2022.1086047. |
[52] | Xu Z, Bagci U, Kubler A, et al. Computer-aided detection and quantification of cavitary tuberculosis from CT scans. Med Phys, 2013, 40(11):113701. doi:10.1118/1.4824979. |
[53] | Ma L, Wang Y, Guo L, et al. Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning. J Xray Sci Technol, 2020, 28(5):939-951. doi:10.3233/XST-200662. |
[54] | 巩盼, 李星宇, 来坤, 等. 基于定量CT检测浸润性肺结核病变的可行性研究. 临床放射学杂志, 2024, 43(4):567-573. doi:10.13437/j.cnki.jcr.2024.04.021. |
[55] | Nijiati M, Guo L, Abulizi A, et al. Deep learning and radiomics of longitudinal CT scans for early prediction of tuberculosis treatment outcomes. Eur J Radiol, 2023, 169:111180. doi:10.1016/j.ejrad.2023.111180. |
[56] | Yan C, Wang L, Lin J, et al. A fully automatic artificial intelligence-based CT image analysis system for accurate detection, diagnosis, and quantitative severity evaluation of pulmonary tuberculosis. Eur Radiol, 2022, 32(4):2188-2199. doi:10.1007/s00330-021-08365-z. |
[57] |
Li Y, Xu Z, LYU X, et al. Radiomics analysis of lung CT for multidrug resistance prediction in active tuberculosis: a multicentre study. Eur Radiol, 2023, 33(9):6308-6317. doi:10.1007/s00330-023-09589-x.
pmid: 37004571 |
[58] | Nijiati M, Guo L, Tuersun A, et al. Deep learning on longitudinal CT scans: automated prediction of treatment outcomes in hospitalized tuberculosis patients. iScience, 2023, 26(11):108326. doi:10.1016/j.isci.2023.108326. |
[59] | Li Y, Wang B, Wen L, et al. Machine learning and radiomics for the prediction of multidrug resistance in cavitary pulmonary tuberculosis: a multicentre study. Eur Radiol, 2023, 33(1):391-400. doi:10.1007/s00330-022-08997-9. |
[60] | 秦李祎, 吕平欣, 郭琳, 等. 基于CT图像的肺结核病灶治愈状态判定深度学习模型的建立. 中国防痨杂志, 2024, 46(3):272-278. doi:10.19982/j.issn.1000-6621.20230457. |
[61] | Zhang J, Huang T, He X, et al. Machine learning-based model assists in differentiating Mycobacterium avium complex pulmonary disease from pulmonary tuberculosis: a multicenter study[J/OL]. J Imaging Inform Med, (2025-04-01)[2025-05-01]. https://link.springer.com/article/10.1007/s10278-025-01486-7. doi:10.1007/s10278-025-01486-7. |
[62] | 张嘉诚, 黄婷婷, 何旭, 等. 基于CT特征和机器学习的鸟-胞内分枝杆菌复合群肺病和初治肺结核鉴别诊断模型的构建与验证. 中国医学影像学杂志, 2024, 32(10):1007-1013,1039. doi:10.3969/j.issn.1005-5185.2024.10.007. |
[63] | Zhang K, Qi S, Cai J, et al. Content-based image retrieval with a Convolutional Siamese Neural Network: Distinguishing lung cancer and tuberculosis in CT images. Comput Biol Med, 2022, 140:105096. doi:10.1016/j.compbiomed.2021.105096. |
[1] | 朱庆东, 赵春艳, 谢周华, 宋树林, 宋畅. 基于人工智能的CT影像组学在结核病诊断和治疗反应监测中应用的研究进展[J]. 中国防痨杂志, 2025, 47(8): 1068-1076. |
[2] | 焦家欢, 孙长峰, 吴刚, 黄富礼, 盛云建. 基于机器学习算法的诊断模型对结核性胸腔积液的应用价值[J]. 中国防痨杂志, 2025, 47(8): 1053-1061. |
[3] | 阿布都热苏力·吐尔孙, 阿布都克尤木江·阿布力孜, 帕提曼·买买提, 黄陈翠, 沈玲燕, 马依迪丽·尼加提. 基于纵向胸部CT的影像组学深度学习预测肺结核患者疗效的研究[J]. 中国防痨杂志, 2025, 47(8): 1044-1052. |
[4] | 李汶翰, 杨静, 李春华. 人工智能在肺结核影像诊断及耐药性预测中的研究进展[J]. 中国防痨杂志, 2024, 46(9): 1098-1103. |
[5] | 高珊, 聂文娟, 侯代伦, 初乃惠. 非结核分枝杆菌肺病影像学表现及应用人工智能新技术的研究进展[J]. 中国防痨杂志, 2024, 46(3): 362-366. |
[6] | 刘雪艳, 王芳, 李春华, 唐光孝, 郑娇凤, 王惠秋, 李玉蕊, 王佳男, 舒伟强, 吕圣秀. 基于深度学习的继发性肺结核CT辅助诊断模型构建及验证[J]. 中国防痨杂志, 2024, 46(3): 279-287. |
[7] | 秦李祎, 吕平欣, 郭琳, 钱令军, 肖谦, 杨阳, 尚园园, 贾俊楠, 初乃惠, 刘远明, 李卫民. 基于CT图像的肺结核病灶治愈状态判定深度学习模型的建立[J]. 中国防痨杂志, 2024, 46(3): 272-278. |
[8] | 李多, 吕平欣. 推动人工智能技术在肺结核影像领域的发展和运用[J]. 中国防痨杂志, 2024, 46(3): 253-259. |
[9] | 李文婷, 王丽, 方勇, 顾瑾, 沙巍. 基于CT影像的深度学习模型在肺结核与非结核分枝杆菌肺病中的鉴别诊断价值[J]. 中国防痨杂志, 2024, 46(10): 1236-1242. |
[10] | 吴键, 侯代伦. 深度学习在肺结核影像诊断中的应用[J]. 中国防痨杂志, 2022, 44(1): 91-94. |
[11] | 王前, 何金戈, 李玉红, 陈明亭, 周林. 人工智能自动阅片技术用于HIV/AIDS人群结核病主动筛查效果的研究[J]. 中国防痨杂志, 2021, 43(6): 557-561. |
[12] | 中国防痨协会学术工作委员会《中国防痨杂志》编辑委员会. 抗结核药品固定剂量复合制剂的临床使用专家共识[J]. 中国防痨杂志, 2020, 42(9): 885-893. |
[13] | 国家感染性疾病临床医学研究中心深圳市第三人民医院《中国防痨杂志》编辑委员会. 肺结核活动性判断规范及临床应用专家共识[J]. 中国防痨杂志, 2020, 42(4): 301-307. |
[14] | 曹盼,王斐,刘哲,刘锦程,梁矿立,袁吉欣,池峰,黄烨东,杨健. 特征金字塔网络在胸部X线摄影图像上筛检肺结核的价值[J]. 中国防痨杂志, 2019, 41(3): 288-293. |
[15] | 袁保东,王卫华,段琼红,张炎林,陆兰英. 耐多药肺结核患者生命质量的评价[J]. 中国防痨杂志, 2006, 28(3): 139-142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||