中国防痨杂志 ›› 2023, Vol. 45 ›› Issue (9): 897-903.doi: 10.19982/j.issn.1000-6621.20230171
收稿日期:
2023-05-24
出版日期:
2023-09-10
发布日期:
2023-09-01
通信作者:
王鹏,Email:基金资助:
Du Yu1,2, Zhang Haipeng1, Wang Peng1()
Received:
2023-05-24
Online:
2023-09-10
Published:
2023-09-01
Contact:
Wang Peng, Email: Supported by:
摘要:
结核病、麻风病、布鲁里溃疡等一系列分枝杆菌感染性疾病已成为亟待解决的严峻问题,然而耐药分枝杆菌的出现,加剧了临床领域对此类疾病治疗的困难。分枝杆菌噬菌体在分枝杆菌感染引起疾病的诊断与治疗中逐渐彰显出巨大的潜力。笔者对分枝杆菌噬菌体的表型、基因组学及其应用现状等进行归纳总结,为分枝杆菌噬菌体进一步的研究和临床应用提供参考。
中图分类号:
杜毓, 张海鹏, 王鹏. 分枝杆菌噬菌体的研究现状及应用进展[J]. 中国防痨杂志, 2023, 45(9): 897-903. doi: 10.19982/j.issn.1000-6621.20230171
Du Yu, Zhang Haipeng, Wang Peng. Research status and application progress of mycobacteria phages[J]. Chinese Journal of Antituberculosis, 2023, 45(9): 897-903. doi: 10.19982/j.issn.1000-6621.20230171
表1
部分分枝杆菌噬菌体的宿主范围
噬菌体名称 | 宿主细菌 | 形态 | 群集 | 宿主范围 | |
---|---|---|---|---|---|
快生型 | 慢生型 | ||||
DS6A[ | 结核分枝杆菌 | Siphoviridae | Singleton | - | 结核分枝杆菌、牛分枝杆菌、鼠分枝杆菌、卡内分枝杆菌、非洲分枝杆菌 |
Chy1[ | 耻垢分枝杆菌 | Siphoviridae | - | 耻垢分枝杆菌 | 结核分枝杆菌、牛分枝杆菌 |
CJAUS9[ | 耻垢分枝杆菌 | Myoviridae | C | 耻垢分枝杆菌 | - |
ZoeJ[ | 耻垢分枝杆菌 | Siphoviridae | K/K2 | 耻垢分枝杆菌 | 结核分枝杆菌、鸟分枝杆菌 |
TM4[ | 耻垢分枝杆菌 | Siphoviridae | K/K2 | 耻垢分枝杆菌 | 结核分枝杆菌、鸟分枝杆菌 |
phiT46-1[ | 脓肿分枝杆菌 | - | - | 脓肿分枝杆菌 | - |
FRAT1[ | 耻垢分枝杆菌 | - | - | 耻垢分枝杆菌 | 卡介苗用牛分枝杆菌 |
Muddy[ | 耻垢分枝杆菌 | Siphoviridae | AB | 耻垢分枝杆菌、 脓肿分枝杆菌(GDO1) | - |
[1] | World Health Organization. Global tuberculosis report 2021. Geneva: World Health Organization, 2021. |
[2] |
Chavarro-Portillo B, Soto CY, Guerrero MI. Mycobacterium leprae’s evolution and environmental adaptation. Acta Trop, 2019, 197: 105041. doi:10.1016/j.actatropica.2019.105041.
doi: 10.1016/j.actatropica.2019.105041 URL |
[3] |
Tortoli E. Microbiological features and clinical relevance of new species of the genus Mycobacterium. Clin Microbiol Rev, 2014, 27(4): 727-752. doi:10.1128/CMR.00035-14.
doi: 10.1128/CMR.00035-14 pmid: 25278573 |
[4] |
Fabroni C, Buggiani G, Lotti T. Therapy of environmental mycobacterial infections. Dermatol Ther, 2008, 21(3): 162-166. doi:10.1111/j.1529-8019.2008.00187.x.
doi: 10.1111/j.1529-8019.2008.00187.x pmid: 18564246 |
[5] |
Hatfull GF. Mycobacteriophages: From Petri dish to patient. PLoS Pathog, 2022, 18(7): e1010602. doi:10.1371/journal.ppat.1010602.
doi: 10.1371/journal.ppat.1010602 URL |
[6] |
Cisek AA, Dᶏbrowska I, Gregorczyk KP, et al. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Curr Microbiol, 2017, 74(2): 277-283. doi:10.1007/s00284-016-1166-x.
doi: 10.1007/s00284-016-1166-x pmid: 27896482 |
[7] |
Gan Y, Liu P, Wu T, et al. Different characteristics between mycobacteriophage Chy1 and D29, which were classified as cluster A2 mycobacteriophages. Indian J Med Microbiol, 2016, 34(2):186-192. doi:10.4103/0255-0857.180282.
doi: 10.4103/0255-0857.180282 pmid: 27080770 |
[8] |
Maharjan A, Nepal R, Dhungana G, et al. solation and Charac-terization of Lytic Bacteriophage Against Multi-drug Resistant Pseudomonas aeruginosa. J Nepal Health Res Counc, 2022, 19(4):717-724. doi:10.33314/jnhrc.v19i04.3837.
doi: 10.33314/jnhrc.v19i04.3837 pmid: 35615828 |
[9] |
Tabassum R, Basit A, Alvi IA, et al. TSP, a virulent Podovirus, can control the growth of Staphylococcus aureus for 12 h. Sci Rep, 2022, 12(1):10008. doi:10.1038/s41598-022-13584-5.
doi: 10.1038/s41598-022-13584-5 pmid: 35705576 |
[10] |
Karumidze N, Kusradze Ia, Rigvava S, et al. Isolation and characterisation of lytic bacteriophages of Klebsiella pneumoniae and Klebsiella oxytoca. Curr Microbiol, 2013, 66(3): 251-258. doi:10.1007/s00284-012-0264-7.
doi: 10.1007/s00284-012-0264-7 pmid: 23143289 |
[11] |
Gigante AM, Hampton CM, Dillard RS, et al. The Ms6 Mycolyl-Arabinogalactan Esterase LysB is Essential for an Efficient Mycobacteriophage-Induced Lysis. Viruses, 2017, 9(11):343. doi:10.3390/v9110343.
doi: 10.3390/v9110343 URL |
[12] |
Gigante AM, Olivença F, Catalão MJ, et al. The Mycobacteriophage Ms 6 LysB N-Terminus Displays Peptidoglycan Binding Affinity. Viruses, 2021, 13(7):1377. doi:10.3390/v13071377.
doi: 10.3390/v13071377 URL |
[13] |
Grover N, Paskaleva EE, Mehta KK, et al. Growth inhibition of Mycobacterium smegmatis by mycobacteriophage-derived enzymes. Enzyme Microb Technol, 2014, 63: 1-6. doi:10.1016/j.enzmictec.2014.04.018.
doi: 10.1016/j.enzmictec.2014.04.018 URL |
[14] | 樊祥宇. 分枝杆菌噬菌体的系统生物学研究. 重庆: 西南大学, 2014. |
[15] |
Froman S, Will DW, Bogen E. Bacteriophage active against virulent Mycobacterium tuberculosis. I. Isolation and activity. Am J Public Health Nations Health, 1954, 44(10):1326-1333. doi:10.2105/ajph.44.10.1326.
doi: 10.2105/ajph.44.10.1326 URL |
[16] |
Redmond WB, Cater JC. A bacteriophage specific for Mycobacterium tuberculosis, varieties hominis and bovis. Am Rev Respir Dis, 1960, 82: 781-786. doi:10.1164/arrd.1960.82.6.781.
doi: 10.1164/arrd.1960.82.6.781 |
[17] |
Mayer O, Jain P, Weisbrod TR, et al. Fluorescent Reporter DS6A Mycobacteriophages Reveal Unique Variations in Infectibility and Phage Production in Mycobacteria. J Bacteriol, 2016, 198(23): 3220-3232. doi:10.1128/JB.00592-16.
doi: 10.1128/JB.00592-16 pmid: 27672191 |
[18] |
Hatfull GF, Sarkis GJ. DNA sequence, structure and gene expression of mycobacteriophage L5: a phage system for mycobacterial genetics. Mol Microbiol, 1993, 7(3): 395-405. doi:10.1111/j.1365-2958.1993.tb01131.x.
doi: 10.1111/j.1365-2958.1993.tb01131.x pmid: 8459766 |
[19] | 刘平. 分枝杆菌噬菌体的生物学特性及基因组学研究. 重庆: 重庆医科大学, 2012. |
[20] | 苏胜兵. 分枝杆菌烈性噬菌体的分离鉴定及其裂解酶基因的克隆与序列分析. 长春: 吉林农业大学, 2012. |
[21] |
刘平, 邬亭亭, 彭丽, 等. 噬菌体Legendre的生物学特性及抗耐药结核潜力的初步研究. 第三军医大学学报, 2012, 34(9): 821-826. doi:10.16016/j.1000-5404.2012.09.002.
doi: 10.16016/j.1000-5404.2012.09.002 |
[22] |
姚义勇, 江莉莎, 张莉, 等. 分枝杆菌噬菌体Guo1环状基因组特征及生物学特性分析. 微生物学通报, 2015, 42(8):1529-1538. doi:10.13344/j.microbiol.china.140872.
doi: 10.13344/j.microbiol.china.140872 |
[23] |
Fan X, Gao X, Wang Q, et al. Complete genome sequence analysis of the novel mycobacteriophage Shandong1. Arch Virol, 2017, 162(12): 3903-3905. doi:10.1007/s00705-017-3534-7.
doi: 10.1007/s00705-017-3534-7 pmid: 28828700 |
[24] |
Satish R, Desouza A. Study of characteristics of mycobacteriophage-A novel tool to treat Mycobacterium spp. Int J Mycobacteriol, 2019, 8(2): 170-174. doi:10.4103/ijmy.ijmy_42_19.
doi: 10.4103/ijmy.ijmy_42_19 URL |
[25] |
Lima-Junior JD, Viana-Niero C, Conde Oliveira DV, et al. Characterization of mycobacteria and mycobacteriophages isolated from compost at the São Paulo Zoo Park Foundation in Brazil and creation of the new mycobacteriophage Cluster U. BMC Microbiol, 2016, 16(1):111. doi:10.1186/s12866-016-0734-3.
doi: 10.1186/s12866-016-0734-3 pmid: 27316672 |
[26] |
Hatfull GF. Mycobacteriophages. Microbiol Spectr, 2018, 6(5): doi:10.1128/microbiolspec.GPP3-0026-2018.
doi: 10.1128/microbiolspec.GPP3-0026-2018 |
[27] |
Ghosh A, Phukan T, Johari S, et al. Dynamics of Mycobacteriophage-Mycobacterial Host Interaction. Methods Mol Biol, 2020, 2131: 329-347. doi:10.1007/978-1-0716-0389-5_19.
doi: 10.1007/978-1-0716-0389-5_19 pmid: 32162265 |
[28] |
Schofield DA, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. Bacteriophage, 2012, 2(2): 105-283. doi:10.4161/bact.19274.
doi: 10.4161/bact.19274 pmid: 23050221 |
[29] |
Dedrick RM, Guerrero Bustamante CA, Garlena RA, et al. Mycobacteriophage ZoeJ: A broad host-range close relative of mycobacteriophage TM4. Tuberculosis (Edinb), 2019, 115: 14-23. doi:10.1016/j.tube.2019.01.002.
doi: 10.1016/j.tube.2019.01.002 URL |
[30] |
Hosseiniporgham S, Sechi LA. A Review on Mycobacterio-phages: From Classification to Applications. Pathogens, 2022, 11(7):777. doi:10.3390/pathogens11070777.
doi: 10.3390/pathogens11070777 URL |
[31] |
Hatfull GF. Actinobacteriophages: Genomics, Dynamics, and Applications. Annu Rev Virol, 2020, 7(1): 37-61. doi:10.1146/annurev-virology-122019-070009.
doi: 10.1146/annurev-virology-122019-070009 pmid: 32991269 |
[32] |
Wetzel KS, Illouz M, Abad L, et al. Mycobacterium trehalose polyphleates are required for infection by therapeutically useful mycobacteriophages BPs and Muddy. bioRxiv, 2023: 2023.03.14.532567. doi:10.1101/2023.03.14.532567.
doi: 10.1101/2023.03.14.532567 |
[33] |
Dion MB, Oechslin F, Moineau S. Phage diversity, genomics and phylogeny. Nat Rev Microbiol, 2020, 18(3):125-138. doi:10.1038/s41579-019-0311-5.
doi: 10.1038/s41579-019-0311-5 pmid: 32015529 |
[34] |
Jacobs-Sera D, Marinelli LJ, Bowman C, et al. On the nature of mycobacteriophage diversity and host preference. Virology, 2012, 434(2):187-201. doi:10.1016/j.virol.2012.09.026.
doi: 10.1016/j.virol.2012.09.026 pmid: 23084079 |
[35] |
Pope WH, Bowman CA, Russell DA, et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. Elife, 2015, 4: e06416. doi:10.7554/eLife.06416.
doi: 10.7554/eLife.06416 URL |
[36] |
Cresawn SG, Pope WH, Jacobs-Sera D, et al. Comparative genomics of Cluster O mycobacteriophages. PLoS One, 2015, 10(3): e0118725. doi:10.1371/journal.pone.0118725.
doi: 10.1371/journal.pone.0118725 URL |
[37] |
Mavrich TN, Hatfull GF. Bacteriophage evolution differs by host, lifestyle and genome. Nat Microbiol, 2017, 2: 17112. doi:10.1038/nmicrobiol.2017.112.
doi: 10.1038/nmicrobiol.2017.112 pmid: 28692019 |
[38] |
Murphy KC. Oligo-Mediated Recombineering and its Use for Making SNPs, Knockouts, Insertions, and Fusions in Mycobacterium tuberculosis. Methods Mol Biol, 2021, 2314: 301-321. doi:10.1007/978-1-0716-1460-0_14.
doi: 10.1007/978-1-0716-1460-0_14 pmid: 34235660 |
[39] |
van Kessel JC, Marinelli LJ, Hatfull GF. Recombineering mycobacteria and their phages. Nat Rev Microbiol, 2008, 6(11): 851-857. doi:10.1038/nrmicro2014.
doi: 10.1038/nrmicro2014 pmid: 18923412 |
[40] |
樊祥宇, 谢建平. 分枝杆菌噬菌体重组系统及其应用. 中国生物工程杂志, 2012, 32(9):101-106. doi:10.13523/j.cb.20120916.
doi: 10.13523/j.cb.20120916 |
[41] |
van Kessel JC, Hatfull GF. Recombineering in Mycobacterium tuberculosis. Nat Methods, 2007, 4(2): 147-152. doi:10.1038/nmeth996.
doi: 10.1038/nmeth996 pmid: 17179933 |
[42] |
van Kessel JC, Hatfull GF. Efficient point mutagenesis in mycobacteria using single-stranded DNA recombineering: characterization of antimycobacterial drug targets. Mol Microbiol, 2008, 67(5): 1094-1107. doi:10.1111/j.1365-2958.2008.06109.x.
doi: 10.1111/j.1365-2958.2008.06109.x pmid: 18221264 |
[43] |
Murphy KC, Nelson SJ, Nambi S, et al. ORBIT: a New Paradigm for Genetic Engineering of Mycobacterial Chromosomes. mBio, 2018, 9(6): e01467-18. doi:10.1128/mBio.01467-18.
doi: 10.1128/mBio.01467-18 |
[44] |
da Silva JL, Piuri M, Broussard G, et al. Application of BRED technology to construct recombinant D 29 reporter phage expressing EGFP. FEMS Microbiol Lett, 2013, 344(2): 166-172. doi:10.1111/1574-6968.12171.
doi: 10.1111/1574-6968.12171 pmid: 23651353 |
[45] |
Tufariello JM, Malek AA, Vilchèze C, et al. Enhanced specialized transduction using recombineering in Mycobacterium tuberculosis. mBio, 2014, 5(3): e01179-14. doi:10.1128/mBio.01179-14.
doi: 10.1128/mBio.01179-14 |
[46] |
Bavda VR, Jain V. Deciphering the Role of Holin in Mycobacteriophage D29 Physiology. Front Microbiol, 2020, 11: 883. doi:10.3389/fmicb.2020.00883.
doi: 10.3389/fmicb.2020.00883 pmid: 32477303 |
[47] |
Lange C, Dheda K, Chesov D, et al. Management of drug-resistant tuberculosis. Lancet, 2019, 394(10202): 953-966. doi:10.1016/S0140-6736(19)31882-3.
doi: S0140-6736(19)31882-3 pmid: 31526739 |
[48] |
陈锦, 姚建荣, 王秀袖. 非结核分枝杆菌分布特征及耐药性分析. 公共卫生与预防医学, 2022, 33(3):134-137. doi:10.3969/j.issn.1006-2483.2022.03.031.
doi: 10.3969/j.issn.1006-2483.2022.03.031 |
[49] |
吴亦斐, 刘伟, 谢捷, 等. 杭州地区流行非结核分枝杆菌鉴定、易感因素和耐药性分析. 中国人兽共患病学报, 2017, 33(10): 882-887. doi:10.3969/j.issn.1002-2694.2017.10.006.
doi: 10.3969/j.issn.1002-2694.2017.10.006 |
[50] |
朱业蕾, 潘爱珍, 周琳, 等. 浙江省非结核分枝杆菌流行状况及耐药性分析. 预防医学, 2021, 33(1):6-10. doi:10.19485/j.cnki.issn2096-5087.2021.01.002.
doi: 10.19485/j.cnki.issn2096-5087.2021.01.002 |
[51] |
杨蕉, 李天萍, 杨超, 等. 皮肤和软组织感染非结核分枝杆菌的分布和耐药性分析. 中国实验诊断学, 2020, 24(8): 1266-1268. doi:10.3969/j.issn.1007-4287.2020.08.011.
doi: 10.3969/j.issn.1007-4287.2020.08.011 |
[52] |
Shield CG, Swift BMC, McHugh TD, et al. Application of Bacteriophages for Mycobacterial Infections, from Diagnosis to Treatment. Microorganisms, 2021, 9(11): 2366. doi:10.3390/microorganisms9112366.
doi: 10.3390/microorganisms9112366 URL |
[53] |
Little JS, Dedrick RM, Freeman KG, et al. Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection. Nat Commun, 2022, 13(1): 2313. doi:10.1038/s41467-022-29689-4.
doi: 10.1038/s41467-022-29689-4 pmid: 35504908 |
[54] |
Dedrick RM, Smith BE, Garlena RA, et al. Mycobacterium abscessus Strain Morphotype Determines Phage Susceptibility, the Repertoire of Therapeutically Useful Phages, and Phage Resistance. mBio, 2021, 12(2): e03431-20. doi:10.1128/mBio.03431-20.
doi: 10.1128/mBio.03431-20 |
[55] |
Trigo G, Martins TG, Fraga AG, et al. Phage therapy is effective against infection by Mycobacterium ulcerans in a murine footpad model. PLoS Negl Trop Dis, 2013, 7(4): e2183. doi:10.1371/journal.pntd.0002183.
doi: 10.1371/journal.pntd.0002183 URL |
[56] |
Guerrero-Bustamante CA, Dedrick RM, Garlena RA, et al. Toward a Phage Cocktail for Tuberculosis: Susceptibility and Tuberculocidal Action of Mycobacteriophages against Diverse Mycobacterium tuberculosis Strains. mBio, 2021, 12(3): e00973-21. doi:10.1128/mBio.00973-21.
doi: 10.1128/mBio.00973-21 |
[57] |
Gan Y, Wu T, Liu P, et al. Characterization and classification of Bo 4 as a cluster G mycobacteriophage that can infect and lyse M.tuberculosis. Arch Microbiol, 2014, 196(3):209-218. doi:10.1007/s00203-014-0954-6.
doi: 10.1007/s00203-014-0954-6 URL |
[58] |
Nick JA, Dedrick RM, Gray AL, et al. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell, 2022, 185(11): 1860-1874.e12. doi:10.1016/j.cell.2022.04.024.
doi: 10.1016/j.cell.2022.04.024 URL |
[59] |
Dedrick RM, Smith BE, Cristinziano M, et al. Phage Therapy of Mycobacterium Infections: Compassionate Use of Phages in 20 Patients With Drug-Resistant Mycobacterial Disease. Clin Infect Dis, 2023, 76(1): 103-112. doi:10.1093/cid/ciac453.
doi: 10.1093/cid/ciac453 URL |
[60] |
Gordillo Altamirano FL, Barr JJ. Phage Therapy in the Postantibiotic Era. Clin Microbiol Rev, 2019, 32(2): e00066-18. doi:10.1128/CMR.00066-18.
doi: 10.1128/CMR.00066-18 |
[61] |
Li Q, Zhou M, Fan X, et al. Mycobacteriophage SWU1 gp 39 can potentiate multiple antibiotics against Mycobacterium via altering the cell wall permeability. Sci Rep, 2016, 6: 28701. doi:10.1038/srep28701.
doi: 10.1038/srep28701 |
[62] |
陶程琳, 王少辉, 张耀东, 等. 噬菌体疗法预防细菌性感染的研究进展及发展方向. 中国兽医科学, 2020, 50(9):1167-1175. doi:10.16656/j.issn.1673-4696.2020.0164.
doi: 10.16656/j.issn.1673-4696.2020.0164 |
[63] |
Swift BMC, Meade N, Barron ES, et al. The development and use of Actiphage to detect viable mycobacteria from bovine tuberculosis and Johne’s disease-infected animals. Microb Biotechnol, 2020, 13(3):738-746. doi:10.1111/1751-7915.13518.
doi: 10.1111/1751-7915.13518 URL |
[64] |
Jain P, Garing S, Verma D, et al. Nanoluciferase Reporter Mycobacteriophage for Sensitive and Rapid Detection of Mycobacterium tuberculosis Drug Susceptibility. J Bacteriol, 2020, 202(22): e00411-20. doi:10.1128/JB.00411-20.
doi: 10.1128/JB.00411-20 |
[65] |
O’Donnell MR, Pym A, Jain P, et al. A Novel Reporter Phage To Detect Tuberculosis and Rifampin Resistance in a High-HIV-Burden Population. J Clin Microbiol, 2015, 53(7): 2188-2194. doi:10.1128/JCM.03530-14.
doi: 10.1128/JCM.03530-14 pmid: 25926493 |
[66] |
Moye ZD, Woolston J, Sulakvelidze A. Bacteriophage Applications for Food Production and Processing. Viruses, 2018, 10(4): 205. doi:10.3390/v10040205.
doi: 10.3390/v10040205 URL |
[67] |
Freeman KG, Wetzel KS, Zhang Y, et al. A Mycobacteriophage-Based Vaccine Platform: SARS-CoV-2 Antigen Expression and Display. Microorganisms, 2021, 9(12): 2414. doi:10.3390/microorganisms9122414.
doi: 10.3390/microorganisms9122414 URL |
[68] |
Petrov G, Dymova M, Richter V. Bacteriophage-Mediated Cancer Gene Therapy. Int J Mol Sci, 2022, 23(22):14245. doi:10.3390/ijms232214245.
doi: 10.3390/ijms232214245 URL |
[69] |
Ababi M, Tridgett M, Osgerby A, et al. Scarless Recombineering of Phage in Lysogenic State. Methods Mol Biol, 2022, 2479:1-9. doi:10.1007/978-1-0716-2233-9_1.
doi: 10.1007/978-1-0716-2233-9_1 pmid: 35583728 |
[70] |
Diacon AH, Guerrero-Bustamante CA, Rosenkranz B, et al. Mycobacteriophages to Treat Tuberculosis: Dream or Delusion? Respiration, 2022, 101(1):1-15. doi:10.1159/000519870.
doi: 10.1159/000519870 URL |
[71] |
Egido JE, Costa AR, Aparicio-Maldonado C, et al. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev, 2022, 46(1): fuab048. doi:10.1093/femsre/fuab048.
doi: 10.1093/femsre/fuab048 URL |
[1] | 王颖超, 刘唯夷, 姬秀秀, 尚雪恬, 贾红彦, 张蓝月, 孙琦, 杜博平, 朱传智, 潘丽萍, 张宗德. 结核病患者外周血单个核细胞内环状RNA表达谱分析及诊断标识的鉴定[J]. 中国防痨杂志, 2025, 47(4): 460-470. |
[2] | 黄伟强, 袁楚楚, 陈星星, 商会会, 徐雅, 胡明. 康替唑胺替代利奈唑胺方案治疗耐药结核病一例[J]. 中国防痨杂志, 2025, 47(4): 527-530. |
[3] | 邱伟霞, 陈丽莉, 徐约丹, 潘宁, 邱霞霞, 郑泓, 金沈洁, 李会娟, 蒋贤高. 海分枝杆菌皮肤感染患者护理一例[J]. 中国防痨杂志, 2025, 47(4): 531-534. |
[4] | 张培泽, 高谦, 邓国防. 18F海藻糖-PET-CT技术或将为结核病临床研究带来革命性改变[J]. 中国防痨杂志, 2025, 47(3): 262-265. |
[5] | 杨子仪, 陈素婷. 贝达喹啉耐药及耐药诊断的研究进展[J]. 中国防痨杂志, 2025, 47(3): 374-379. |
[6] | 李雪莲, 张红燕, 王隽, 王庆枫, 马丽萍, 初乃惠, 聂文娟. 耐药肺结核患者超疗程使用德拉马尼的安全性分析[J]. 中国防痨杂志, 2025, 47(2): 164-168. |
[7] | 游成东, 朱玲, 李佩波. 肺结核患者血清微量元素对疾病发展与营养治疗影响的研究进展[J]. 中国防痨杂志, 2025, 47(2): 218-223. |
[8] | 付颖, 熊阳阳, 方思, 李传香, 郭红荣. 血清白蛋白及其衍生生物标志物与慢性阻塞性肺疾病关系研究进展[J]. 中国防痨杂志, 2025, 47(2): 231-236. |
[9] | 倪健健. 耐多药肺结核治疗效果评价[J]. 中国防痨杂志, 2024, 46(S2): 13-15. |
[10] | 姚伊依, 李婉婷, 高杰, 梁学威, 丁戊坤, 夏联恒. 糖尿病合并肺结核并发糖尿病足溃疡的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 517-519. |
[11] | 何裕畅, 叶志辉, 张秀莲, 张诗雅. 老年社区获得性肺炎的临床表现与治疗研究进展[J]. 中国防痨杂志, 2024, 46(S2): 520-521. |
[12] | 仇丽萍. 非小细胞肺癌免疫相关生物标志物的研究进展[J]. 中国防痨杂志, 2024, 46(S2): 528-529. |
[13] | 鲁燕, 蒋超, 万恒静, 阚月一, 张菁. 精神分裂症并发肺结核患者护理干预价值研究进展[J]. 中国防痨杂志, 2024, 46(S2): 530-532. |
[14] | 仲玲珊, 王莉, 张硕, 李楠, 杨晴媛, 丁文龙, 陈星枝, 黄陈翠, 邢志珩. 基于CT图像结合放射组学和语义特征的机器学习模型诊断非结核分枝杆菌肺病和肺结核的研究[J]. 中国防痨杂志, 2024, 46(9): 1042-1049. |
[15] | 耿子妹, 王潮虹, 龙嗣博, 郑迈克, 施亦衡, 孙勇, 赵艳, 王桂荣. 重症肺结核患者病原学阳性率及利福平耐药结果分析[J]. 中国防痨杂志, 2024, 46(9): 1050-1055. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||