中国防痨杂志 ›› 2022, Vol. 44 ›› Issue (11): 1107-1121.doi: 10.19982/j.issn.1000-6621.20220239
收稿日期:
2022-06-22
出版日期:
2022-11-10
发布日期:
2022-11-03
通信作者:
吴雪琼
E-mail:xueqiongwu@139.com
基金资助:
Gong Wenping, Mi Jie, Wu Xueqiong()
Received:
2022-06-22
Online:
2022-11-10
Published:
2022-11-03
Contact:
Wu Xueqiong
E-mail:xueqiongwu@139.com
Supported by:
摘要:
结核病不仅是一种传染性疾病,也是一种免疫性疾病。免疫疗法是一种潜在的结核病和非结核分枝杆菌病治疗手段,可以通过影响和调节人体的免疫系统来抑制甚至清除结核分枝杆菌和非结核分枝杆菌。本文中,笔者就治疗结核病和非结核分枝杆菌病的免疫活性物质如细胞因子、抗体、小分子活性肽、溶菌酶及免疫阻滞剂等的研究进展进行总结和凝练,以期为结核病和非结核分枝杆菌病的治疗提供新思路。
中图分类号:
龚文平, 米洁, 吴雪琼. 免疫活性物质:结核病和非结核分枝杆菌病治疗的新选择[J]. 中国防痨杂志, 2022, 44(11): 1107-1121. doi: 10.19982/j.issn.1000-6621.20220239
Gong Wenping, Mi Jie, Wu Xueqiong. Immunologically active substances: novel treatment options for tuberculosis and nontuberculous mycobacteriosis[J]. Chinese Journal of Antituberculosis, 2022, 44(11): 1107-1121. doi: 10.19982/j.issn.1000-6621.20220239
表1
细胞因子在结核病治疗方面的研究进展
名称 | 功能 | 结核病治疗 | 适应人群 | 参考文献 |
---|---|---|---|---|
IFN-γ/TNF-α | IFN-γ主要由T淋巴细胞产生,TNF-α主要由活化的巨噬细胞、NK细胞及T淋巴细胞产生。两者都是一种高效的抗感染生物活性物质,又是一种具有广泛免疫调节作用的细胞因子 | 1.控制MTB感染的关键性Th1型细胞因子 2.在对抗MTB感染中扮演保护性细胞因子的角色 3.在结核病患者和动物模型上均可以刺激巨噬细胞的杀菌活性 4.雾化吸入IFN-γ可以治疗耐多药结核病 | 活动性结核病和耐多药结核病患者 | [ |
IL-2 | IL-2主要由活化T淋巴细胞产生,具有免疫应答和抗感染作用,能激活巨噬细胞,刺激T淋巴细胞、NK细胞和B淋巴细胞增殖,促进细胞因子和抗体产生 | 1.明显抑制MTB的生长 2.改善耐多药结核病患者的预后 3.改善结核病患者的痰培养和涂片阴转率 | 活动性结核病和耐多药结核病患者 | [ |
IL-7 | IL-7是由骨髓基质细胞分泌的糖蛋白,其靶细胞主要为淋巴细胞,对来自人或小鼠骨髓的B祖细胞、胸腺细胞及外周成熟的T淋巴细胞等均有促生长活性 | 1.激活巨噬细胞发挥杀菌作用,诱导Th1型免疫应答,促进IFN-γ的分泌,抑制Th2型免疫应答 2.延长MTB感染小鼠的生存期限,提高卡介苗接种效果 3.分枝杆菌和分枝杆菌细胞壁成分诱导单核细胞IL-7受体表达,IL-7促进单核细胞来源的巨噬细胞体外杀灭分枝杆菌 | 活动性结核病患者 | [ |
IL-12 | IL-12是由树突状细胞和吞噬细胞产生的一种细胞因子,可刺激活化型T淋巴细胞增殖,促进Th0细胞向Th1细胞分化;诱导细胞毒性T淋巴细胞和NK细胞的细胞毒性并促进其分泌IFN-γ、TNF-α、GM-CSF等细胞因子;促进NK细胞和IL-2Rα、TNF受体及CD56分子的表达,增强对肿瘤细胞的抗体依赖细胞介导的细胞毒性作用 | 1.诱导Th1型免疫应答,促进IFN-γ的分泌,杀灭或清除MTB 2.IL-12治疗可提高CD4+ T淋巴细胞缺陷型小鼠的存活率并减少MTB载量,但对野生型小鼠无明显作用 3.上调感染局部部位MTB特异性IL-21的表达,可能在结核感染的局部免疫反应中起重要作用 4.应用大剂量的IL-12治疗结核病的不良反应较大 | 结核性胸膜炎患者 | [ |
IL-15 | IL-15是新近发现的一种因子,可由活化的单核-巨噬细胞、表皮细胞和成纤维细胞等多种细胞产生。发挥类似IL-2的生物学活性,是连接固有免疫和特异性免疫的桥梁 | 1.在分枝杆菌感染的保护性免疫中发挥作用 2.促进T淋巴细胞增殖和Th1细胞因子的分泌,并且可以明显降低小鼠肺脏中MTB菌量 | 活动性结核病患者 | [ |
IL-24 | IL-24主要由黑色素瘤细胞和巨核细胞产生,是一种免疫调节分子,主要表现为对Th1型细胞因子的诱导,具有抗肿瘤作用和抗感染作用 | 1.可诱导Th1型免疫应答能力,增强小鼠动物模型对MTB标准株H37Rv感染的抗性 2.MTB的感染可以抑制人体IL-24的表达,进而增加结核易感性并促进慢性结核病的发展 3.可调节结核病患者IFN-γ的表达 4.与结核分枝杆菌潜伏感染者相比,结核病患者外周血单个核细胞分泌的IL-24和IFN-γ水平更低 | 活动性结核病患者 | [ |
名称 | 功能 | 结核病治疗 | 适应人群 | 参考文献 |
IL-32 | IL-32是参与固有免疫和特异性免疫反应的一种重要的分泌性蛋白,发挥着促炎性细胞因子和细胞内细胞因子调节子的作用 | 1.可增强人类单核细胞来源的巨噬细胞清除MTB的能力 2.转基因小鼠Ⅱ型肺泡上皮细胞表达的人类IL-32能够明显减少肺部MTB菌量 3.有助于预防MTB感染 | 活动性结核病患者和结核分枝杆菌潜伏感染者 | [ |
GM-CSF | GM-CSF是一种由巨噬细胞、T细胞、肥大细胞、NK细胞、内皮细胞和成纤维细胞分泌的单体糖蛋白,具有细胞因子的功能 | 1.利用重组GM-CSF和阿奇霉素/阿米卡星联合治疗小鼠,可以明显降低小鼠脏器中分枝杆菌载量,提高小鼠生存率 2.利用重组人GM-CSF联合化疗辅助治疗活动性肺结核患者,4周时痰涂片阴转率无差异,但在治疗8周时有痰菌阴转较快的趋势 3.可被用于预防结核分枝杆菌潜伏感染或传播的再激活 4.对控制肉芽肿内MTB具有一定作用 5.在防止细胞死亡和维持宿主细胞对MTB感染的保护性分化和代谢状态方面起着关键作用 | 活动性结核病患者、结核性肉芽肿患者、结核分枝杆菌潜伏感染者 | [ |
G-CSF | G-CSF是由单核细胞、成纤维细胞和内皮细胞产生的一种造血生长因子,能与细胞表面的特定受体结合,促使中性粒细胞系造血祖细胞生长和分化,保护中性粒细胞避免凋亡并加强它们的功能 | 1.G-CSF与克拉霉素联合使用能抑制小鼠肺脏和脾脏中鸟分枝杆菌的菌量 2.G-CSF治疗小鼠能抑制或杀死鸟分枝杆菌的生长 3.重组G-CSF不能阻止鸟分枝杆菌感染的进程 | 鸟分枝杆菌感染者 | [ |
表2
细胞因子及其阻滞剂治疗结核病临床试验研究进展
免疫活性 物质 | 入组人群 | 研发者/开发者 | 样本量 | 试验方案和干预措施 | 临床试验 阶段 | 注册号 | 研究 进度 | |
---|---|---|---|---|---|---|---|---|
γ-干扰素 | 肺结核合并 HIV感染 患者 | 美国西北州立医科大学,美国SPP Pharmaclon公司 | 78例 | 试验组1:接受皮下γ-干扰素(Ingaron ®)50万IU与α-干扰素(Interal®)300万IU交替治疗,间隔1d 试验组2:每天接受皮下注射γ-干扰素(Ingaron®)50万IU和α-干扰素(Interal ®)300万IU 对照组:所有参与者只接受基本的抗菌素治疗 | Ⅰ/Ⅱ期 | NCT05065905 | 已完成 | |
γ-干扰素 | 耐多药结核 病患者 | 美国国家过敏和传染病研究所,美国国立卫生研究院临床中心 | 30例 | 一项Ⅰ/Ⅱ期、对照、剂量增加的研究,以确定γ-干扰素给药对耐多药结核病患者的临床状况和免疫功能的耐受性、毒性和临床效果。入组患者每周皮下注射3次γ-干扰素,3种剂量水平0.025mg/m2、0.05mg/m2、0.1mg/m2,为期1年 | Ⅰ/Ⅱ期 | NCT00001407 | 已完成 | |
白细胞介 素-2 | 耐多药结核 病患者 | 南京医科大学附属第一医院 | 500例 | 试验组:给予低剂量重组人白细胞介素-2加标准抗结核化疗4个疗程。采用重组人白细胞介素-2每隔1d皮下注射1次,共30d,分别于第1、3、5、7个月进行4个疗程。标准抗耐多药结核病化疗方案共24个月,其中6个月吡嗪酰胺+卡那霉素/阿米卡星或者卷曲霉素+对氨基水杨酸+丙硫异烟胺+左氧氟沙星为强化期治疗,18个月吡嗪酰胺+左氧氟沙星+丙硫异烟胺+对氨基水杨酸为巩固期治疗。随访36个月以上 对照组:给予标准抗耐多药结核病化疗方案,共24个月,其中6个月吡嗪酰胺+卡那霉素/阿米卡星或者卷曲霉素+对氨基水杨酸+丙硫异烟胺+左氧氟沙星为强化期治疗,18个月吡嗪酰胺+左氧氟沙星+丙硫异烟胺+对氨基水杨酸为巩固期治疗。随访36个月以上 | Ⅱ/Ⅲ期 | NCT03069534 | 已完成 | |
白细胞介 素-2 | 肺结核患者 | 首都医科大学附属北京胸科医院 | 1100例 | 试验组:2H-R-Z-E-/4H-R(H:异烟肼;R:利福平;Z:吡嗪酰胺;E:乙胺丁醇)联合白细胞介素-2(500000IU/d,1个月皮下注射)。剂量:异烟肼300mg(1次/d),利福平450mg(体质量<50kg,1次/d)或600mg(体质量≥50kg,1次/d),吡嗪酰胺1500mg(体质量<50kg,1次/d)或30mg/kg(体质量≥50kg,1次/d),乙胺丁醇750mg(体质量<50kg,1次/d)或1000mg(体质量≥50kg,1次/d) 对照组:2H-R-Z-E-/4H-R。剂量:异烟肼300mg(1次/d),利福平450mg(体质量<50kg,1次/d)或600mg(体质量≥50kg,1次/d),吡嗪酰胺1500mg(体质量<50kg,1次/d)或30mg/kg(体质量≥50kg,1次/d),乙胺丁醇750mg(体质量<50kg,1次/d)或1000mg(体质量≥50kg,1次/d) | Ⅳ期 | NCT04766307 | 招募 志愿者 | |
白细胞介 素-17 阻滞剂 | 银屑病合并 结核分枝杆 菌潜伏感染 患者 | 北京协和医院 | 300例 | 将纳入的银屑病患者根据基线筛查是否合并结核分枝杆菌潜伏感染分为两组,所有患者均给予白细胞介素-17阻滞剂,随访至少2年,观察两组活动性结核病的发病率 | Ⅳ期 | ChiCTR2100045823 | 招募 志愿者 | |
白细胞介素-4 阻滞剂 Pascolizumab | 肺结核患者 | 新加坡国立大学附属医院,新加坡国立大学 | 32例 | 试验组:Pascolizumab单抗0.05~10mg/kg 对照组:生理盐水 | Ⅱ期 | NCT01638520 | 未知 | |
γδT细胞 | 耐多药结核 病患者 | 深圳市第三人民医院 | 45例 | 试验组:接受抗结核药物治疗,同时接受异基因γδT细胞治疗 安慰剂对照组:仅接受抗结核药物治疗 | Ⅰ期 | NCT03575299 | 招募 志愿者 |
表3
小分子活性肽在结核病治疗方面的研究进展
活性肽 | 代表性物质 | 功能 | 结核病治疗效果 | 参考文献 |
---|---|---|---|---|
转移因子 | 转移因子 | 转移因子是免疫特异性的小分子多肽,可以以免疫特异性的方式与抗原分子相互作用,提高T淋巴细胞活性,增强细胞免疫功能 | 1.协同化疗药物清除和杀灭结核分枝杆菌,从而明显提高治愈率,降低复发率 2.动物模型上,转移因子治疗可抑制结核分枝杆菌增殖 3.治疗复发肺结核患者,患者的临床症状得到改善,皮肤对结核菌素的反应性得到恢复,痰培养阴转 | [ |
抗菌肽 | 人中性粒细胞肽-1(HNP-1)、人β防御素-2(HBD-2)、HHC-10、LLKKK18、Magainin-Ⅰ模拟肽、先天防御调节肽(IDR)-HH2、IDR-1018 | 抗菌肽是昆虫体内经诱导而产生的一类具有抗菌活性的碱性多肽物质,具有强碱性、热稳定性及广谱抗菌性等特点 | 1.HNP-1、HBD-2或HNP-1/HBD-2联合治疗小鼠结核感染模型均可减少细菌载量并减轻肺部炎症 2.HHC-10和LLKKK18治疗可降低卡介菌、结核分枝杆菌和鸟分枝杆菌感染小鼠模型的细菌载量 3.Magainin-Ⅰ模拟肽通过阻止结核分枝杆菌抑制吞噬体-溶酶体融合和凋亡,而使活菌数明显减少,增强了宿主防御机制 4.IDR-HH2和IDR-1018在动物模型中降低了结核分枝杆菌菌量,尤其是IDR-1018可诱导小鼠肺部病变明显减少 | [ |
胸腺肽 | 小牛胸腺素、 胸腺肽-β4 | 胸腺肽是胸腺组织分泌的具有生理活性的一组多肽,其诱导T淋巴细胞分化成熟、增强细胞因子的生成和增强B淋巴细胞的抗体应答 | 1.小牛胸腺素治疗逆转了在卡介苗感染的骨髓重建小鼠体质量逐渐减轻的趋势,并可以减少脏器中分枝杆菌的菌量 2.胸腺肽能够体外改善肺结核患者的T淋巴细胞活性 3.胸腺肽联合抗结核药物治疗结核病,可改善症状,促进痰菌阴转和病灶吸收 | [ |
保尔佳 | 保尔佳 | 保尔佳是从动物脾脏中提取的低分子活性肽类物质,能激活免疫系统,促使白细胞介素-2和γ-干扰素释放,增加T淋巴细胞活化并刺激细胞分裂抑制素增加,提高机体免疫力 | 保尔佳辅助抗结核药物化疗,可改善结核病患者症状,用药后患者无肝、肾功能改变及不良反应的发生 | [ |
[1] |
Ramos-Espinosa O, Islas-Weinstein L, Peralta-Alvarez MP, et al. The use of immunotherapy for the treatment of tuberculosis. Expert Rev Respir Med, 2018, 12(5): 427-440. doi: 10.1080/17476348.2018.1457439.
doi: 10.1080/17476348.2018.1457439 URL |
[2] |
Larsen SE, Baldwin SL, Orr MT, et al. Enhanced anti-Mycobacterium tuberculosis immunity over time with combined drug and immunotherapy treatment. Vaccines (Basel), 2018, 6(2): 30. doi: 10.3390/vaccines6020030.
doi: 10.3390/vaccines6020030 |
[3] |
Lazard T, Perronne C, Cohen Y, et al. Efficacy of granulocyte colony-stimulating factor and RU-40555 in combination with clarithromycin against Mycobacterium avium complex infection in C57BL/6 mice. Antimicrob Agents Chemother, 1993, 37(4): 692-695. doi: 10.1128/AAC.37.4.692.
doi: 10.1128/AAC.37.4.692 pmid: 7684213 |
[4] |
Bermudez LE, Petrofsky M, Stevens P. Treatment with recombinant granulocyte colony-stimulating factor (Filgrastin) stimulates neutrophils and tissue macrophages and induces an effective non-specific response against Mycobacterium avium in mice. Immunology, 1998, 94(3): 297-303. doi: 10.1046/j.1365-2567.1998.00529.x.
doi: 10.1046/j.1365-2567.1998.00529.x pmid: 9767410 |
[5] |
Gonçalves AS, Appelberg R. Effects of recombinant granulocyte-colony stimulating factor administration during Mycobacterium avium infection in mice. Clin Exp Immunol, 2001, 124(2): 239-247. doi: 10.1046/j.1365-2249.2001.01552.x.
doi: 10.1046/j.1365-2249.2001.01552.x pmid: 11422200 |
[6] |
Gong W, Wu X. Differential Diagnosis of Latent Tuberculosis Infection and Active Tuberculosis: A Key to a Successful Tuberculosis Control Strategy. Front Microbiol, 2021, 12(3126): 745592. doi: 10.3389/fmicb.2021.745592.
doi: 10.3389/fmicb.2021.745592 URL |
[7] |
Gong W, Aspatwar A, Wang S, et al. COVID-19 pandemic: SARS-CoV-2 specific vaccines and challenges, protection via BCG trained immunity, and clinical trials. Expert Rev Vaccines, 2021, 20(7): 857-880. doi: 10.1080/14760584.2021.1938550.
doi: 10.1080/14760584.2021.1938550 URL |
[8] |
Aspatwar A, Gong W, Wang S, et al. Tuberculosis vaccine BCG: the magical effect of the old vaccine in the fight against the COVID-19 pandemic. Int Rev Immunol, 2022, 41(2): 283-296. doi: 10.1080/08830185.2021.1922685.
doi: 10.1080/08830185.2021.1922685 URL |
[9] |
Gong W, Liang Y, Mi J, et al. A peptide-based vaccine ACP derived from antigens of Mycobacterium tuberculosis induced Th1 response but failed to enhance the protective efficacy of BCG in mice[J/OL]. Indian J Tuberc, 2021[2021-08-18]. doi: 10.1016/j.ijtb.2021.08.016. Online ahead of print.
doi: 10.1016/j.ijtb.2021.08.016 |
[10] |
Gong W, Liang Y, Mi J, et al. Peptides-based vaccine MP3RT induced protective immunity against Mycobacterium tuberculosis infection in a humanized mouse model. Front Immunol, 2021, 12(1393): 666290. doi: 10.3389/fimmu.2021.666290.
doi: 10.3389/fimmu.2021.666290 |
[11] |
Gong W, Pan C, Cheng P, et al. Peptide-Based Vaccines for Tuberculosis. Front Immunol, 2022, 13: 830497. doi: 10.3389/fimmu.2022.830497.
doi: 10.3389/fimmu.2022.830497 |
[12] |
Flynn JL, Chan J, Triebold KJ, et al. An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med, 1993, 178(6): 2249-2254. doi: 10.1084/jem.178.6.2249.
doi: 10.1084/jem.178.6.2249 pmid: 7504064 |
[13] |
Flynn JL, Goldstein MM, Chan J, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity, 1995, 2(6): 561-572. doi: 10.1016/1074-7613(95)90001-2.
doi: 10.1016/1074-7613(95)90001-2 |
[14] | 汤红明, 刘君炎, 高立芬. IFN-γ与TNF联合治疗结核菌感染小鼠疗效及机理的研究. 免疫学杂志, 2001, 17(6): 457-459. |
[15] |
Reljic R. IFN-gamma therapy of tuberculosis and related infections. J Interferon Cytokine Res, 2007, 27(5): 353-364. doi: 10.1089/jir.2006.0103.
doi: 10.1089/jir.2006.0103 URL |
[16] |
Condos R, Rom WN, Schluger NW. Treatment of multidrug-resistant pulmonary tuberculosis with interferon-gamma via aerosol. Lancet, 1997, 349(9064): 1513-1515. doi: 10.1016/S0140-6736(96)12273-X.
doi: 10.1016/S0140-6736(96)12273-X pmid: 9167461 |
[17] |
Madrid-Paulino E, Mata-Espinosa D, Leon-Contreras JC, et al. Klf10 favors Mycobacterium tuberculosis survival by impairing IFN-gamma production and preventing macrophages reprograming to macropinocytosis. J Leukoc Biol, 2022, 112(3): 475-490. doi: 10.1002/JLB.4MA0422-288R.
doi: 10.1002/JLB.4MA0422-288R URL |
[18] |
Jeevan A, Asherson GL. Recombinant interleukin-2 limits the replication of Mycobacterium lepraemurium and Mycobacterium bovis BCG in mice. Infect Immun, 1988, 56(3): 660-664. doi: 10.1128/iai.56.3.660-664.1988.
doi: 10.1128/iai.56.3.660-664.1988 pmid: 3277917 |
[19] |
Bermudez LE, Stevens P, Kolonoski P, et al. Treatment of experimental disseminated Mycobacterium avium complex infection in mice with recombinant IL-2 and tumor necrosis factor. J Immunol, 1989, 143(9): 2996-3000.
pmid: 2553816 |
[20] |
He W, Zhang X, Li W, et al. Activated pulmonary tuberculosis in a patient with melanoma during PD-1 inhibition: a case report. Onco Targets Ther, 2018, 11: 7423-7427. doi: 10.2147/OTT.S178246.
doi: 10.2147/OTT.S178246 URL |
[21] | 杨晓敏, 董德琼, 李昶, 等. 白细胞介素7和15对肺结核患者Th1/Th2平衡的调节作用. 中华结核和呼吸杂志, 2006, 29(6): 403-406. |
[22] |
Maeurer MJ, Trinder P, Hommel G, et al. Interleukin-7 or interleukin-15 enhances survival of Mycobacterium tuberculosis-infected mice. Infect Immun, 2000, 68(5): 2962-2970. doi: 10.1128/IAI.68.5.2962-2970.2000.
doi: 10.1128/IAI.68.5.2962-2970.2000 pmid: 10768995 |
[23] |
Singh V, Gowthaman U, Jain S, et al. Coadministration of interleukins 7 and 15 with bacille Calmette-Guérin mounts enduring T cell memory response against Mycobacterium tuberculosis. J Infect Dis, 2010, 202(3): 480-489. doi: 10.1086/653827.
doi: 10.1086/653827 URL |
[24] |
Adankwah E, Harelimana JD, Minadzi D, et al. Lower IL-7 Receptor Expression of Monocytes Impairs Antimycobacterial Effector Functions in Patients with Tuberculosis. J Immunol, 2021, 206(10): 2430-2440. doi: 10.4049/jimmunol.2001256.
doi: 10.4049/jimmunol.2001256 pmid: 33911006 |
[25] |
Nolt D, Flynn JL. Interleukin-12 therapy reduces the number of immune cells and pathology in lungs of mice infected with Mycobacterium tuberculosis. Infect Immun, 2004, 72(5): 2976-2988. doi: 10.1128/IAI.72.5.2976-2988.2004.
doi: 10.1128/IAI.72.5.2976-2988.2004 URL |
[26] |
Li L, Jiang Y, Lao S, et al. Mycobacterium tuberculosis-Specific IL-21+IFN-gamma+CD4+ T Cells Are Regulated by IL-12. PLoS One, 2016, 11(1): e0147356. doi: 10.1371/journal.pone.0147356.
doi: 10.1371/journal.pone.0147356 |
[27] |
Pydi SS, Bandaru AR, Venkatasubramanian S, et al. Vaccine for tuberculosis: up-regulation of IL-15 by Ag85A and not by ESAT-6. Tuberculosis (Edinb), 2011, 91(2): 136-139. doi: 10.1016/j.tube.2010.12.003.
doi: 10.1016/j.tube.2010.12.003 URL |
[28] |
Lazarevic V, Yankura DJ, DiVito SJ, et al. Induction of Mycobacterium tuberculosis-specific primary and secondary T-cell responses in interleukin-15-deficient mice. Infect Immun, 2005, 73(5): 2910-2922. doi: 10.1128/IAI.73.5.2910-2922.2005.
doi: 10.1128/IAI.73.5.2910-2922.2005 pmid: 15845497 |
[29] | 章晓联, 孙平. 人白细胞介素24增强抗结核的作用: CN200710052156.4. 2010-10-27. |
[30] |
Ma Y, Chen HD, Wang Y, et al. Interleukin 24 as a novel potential cytokine immunotherapy for the treatment of Mycobacterium tuberculosis infection. Microbes Infect, 2011, 13(12/13): 1099-1110. doi: 10.1016/j.micinf.2011.06.012.
doi: 10.1016/j.micinf.2011.06.012 URL |
[31] |
Wu B, Huang C, Kato-Maeda M, et al. IL-24 modulates IFN-gamma expression in patients with tuberculosis. Immunol Lett, 2008, 117(1): 57-62. doi: 10.1016/j.imlet.2007.11.018.
doi: 10.1016/j.imlet.2007.11.018 pmid: 18199488 |
[32] |
Montoya D, Inkeles MS, Liu PT, et al. IL-32 is a molecular marker of a host defense network in human tuberculosis. Sci Transl Med, 2014, 6(250): 250ra114. doi: 10.1126/scitranslmed.3009546.
doi: 10.1126/scitranslmed.3009546 |
[33] |
Bai X, Shang S, Henao-Tamayo M, et al. Human IL-32 expression protects mice against a hypervirulent strain of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2015, 112(16): 5111-5116. doi: 10.1073/pnas.1424302112.
doi: 10.1073/pnas.1424302112 URL |
[34] |
Koeken V, Verrall AJ, Ardiansyah E, et al. IL-32 and its splice variants are associated with protection against Mycobacterium tuberculosis infection and skewing of Th1/Th17 cytokines. J Leukoc Biol, 2020, 107(1): 113-118. doi: 10.1002/JLB.4AB0219-071R.
doi: 10.1002/JLB.4AB0219-071R URL |
[35] |
Bermudez LE, Martinelli J, Petrofsky M, et al. Recombinant granulocyte-macrophage colony-stimulating factor enhances the effects of antibiotics against Mycobacterium avium complex infection in the beige mouse model. J Infect Dis, 1994, 169(3): 575-580. doi: 10.1093/infdis/169.3.575.
doi: 10.1093/infdis/169.3.575 pmid: 8158029 |
[36] |
Francisco-Cruz A, Mata-Espinosa D, Estrada-Parra S, et al. Immunotherapeutic effects of recombinant adenovirus encoding granulocyte-macrophage colony-stimulating factor in experimental pulmonary tuberculosis. Clin Exp Immunol, 2013, 171(3): 283-297. doi: 10.1111/cei.12015.
doi: 10.1111/cei.12015 pmid: 23379435 |
[37] |
Mishra A, Singh VK, Jagannath C, et al. Human Macrophages Exhibit GM-CSF Dependent Restriction of Mycobacterium tuberculosis Infection via Regulating Their Self-Survival, Differentiation and Metabolism. Front Immunol, 2022, 13: 859116. doi: 10.3389/fimmu.2022.859116.
doi: 10.3389/fimmu.2022.859116 |
[38] |
Arbues A, Schmidiger S, Kammuller M, et al. Extracellular matrix-induced gm-csf and hypoxia promote immune control of Mycobacterium tuberculosis in human in vitro granulomas. Front Immunol, 2021, 12: 727508. doi: 10.3389/fimmu.2021.727508.
doi: 10.3389/fimmu.2021.727508 |
[39] |
Denis M, Ghadirian E. Immunotherapy of airborne tuberculosis in mice via the lung-specific delivery of cytokines. Can J Infect Dis, 1993, 4(1): 38-42. doi: 10.1155/1993/954372.
doi: 10.1155/1993/954372 |
[40] |
Appelberg R, Castro AG, Pedrosa J, et al. Role of gamma interferon and tumor necrosis factor alpha during T-cell-independent and -dependent phases of Mycobacterium avium infection. Infect Immun, 1994, 62(9): 3962-3971. doi: 10.1128/iai.62.9.3962-3971.1994.
doi: 10.1128/iai.62.9.3962-3971.1994 pmid: 8063414 |
[41] |
Skerry C, Harper J, Klunk M, et al. Adjunctive TNF inhibition with standard treatment enhances bacterial clearance in a murine model of necrotic TB granulomas. PLoS One, 2012, 7(6): e39680. doi: 10.1371/journal.pone.0039680.
doi: 10.1371/journal.pone.0039680 |
[42] |
Raad I, Hachem R, Leeds N, et al. Use of adjunctive treatment with interferon-gamma in an immunocompromised patient who had refractory multidrug-resistant tuberculosis of the brain. Clin Infect Dis, 1996, 22(3): 572-574. doi: 10.1093/clinids/22.3.572.
doi: 10.1093/clinids/22.3.572 pmid: 8852983 |
[43] |
Jaffe HA, Buhl R, Mastrangeli A, et al. Organ specific cytokine therapy. Local activation of mononuclear phagocytes by delivery of an aerosol of recombinant interferon-gamma to the human lung. J Clin Invest, 1991, 88(1): 297-302. doi: 10.1172/JCI115291.
doi: 10.1172/JCI115291 pmid: 1905329 |
[44] |
Condos R, Hull FP, Schluger NW, et al. Regional deposition of aerosolized interferon-gamma in pulmonary tuberculosis. Chest, 2004, 125(6): 2146-2155. doi: 10.1378/chest.125.6.2146.
doi: 10.1378/chest.125.6.2146 pmid: 15189935 |
[45] |
林存智, 朱新红, 张海燕, 等. 雾化吸入重组人干扰素-γ治疗复治耐多药肺结核的临床研究. 中国医师进修杂志, 2007, 30(6): 16-18. doi: 10.3760/cma.j.issn.1673-4904.2007.06.007.
doi: 10.3760/cma.j.issn.1673-4904.2007.06.007 |
[46] |
Suarez-Mendez R, Garcia-Garcia I, Fernandez-Olivera N, et al. Adjuvant interferon gamma in patients with drug-resistant pulmonary tuberculosis: a pilot study. BMC Infect Dis, 2004, 4: 44. doi: 10.1186/1471-2334-4-44.
doi: 10.1186/1471-2334-4-44 URL |
[47] |
Ulrichs T, Fieschi C, Nevicka E, et al. Variable outcome of experimental interferon-gamma therapy of disseminated Bacillus Calmette-Guerin infection in two unrelated interleukin-12Rbeta1-deficient Slovakian children. Eur J Pediatr, 2005, 164(3): 166-172. doi: 10.1007/s00431-004-1599-2.
doi: 10.1007/s00431-004-1599-2 pmid: 15633050 |
[48] |
Lauw FN, van Der Meer JT, de Metz J, et al. No beneficial effect of interferon-gamma treatment in 2 human immunodeficiency virus-infected patients with Mycobacterium avium complex infection. Clin Infect Dis, 2001, 32(4): e81-82. doi: 10.1086/318705.
doi: 10.1086/318705 pmid: 11181141 |
[49] |
Johnson BJ, Ress SR, Willcox P, et al. Clinical and immune responses of tuberculosis patients treated with low-dose IL-2 and multidrug therapy. Cytokines Mol Ther, 1995, 1(3): 185-196.
pmid: 9384675 |
[50] |
Johnson B, Bekker LG, Ress S, et al. Recombinant interleukin 2 adjunctive therapy in multidrug-resistant tuberculosis. Novartis Found Symp, 1998, 217: 99-106; discussion 106-111. doi: 10.1002/0470846526.ch7.
doi: 10.1002/0470846526.ch7 pmid: 9949803 |
[51] |
Johnson BJ, Estrada I, Shen Z, et al. Differential gene expression in response to adjunctive recombinant human interleukin-2 immunotherapy in multidrug-resistant tuberculosis patients. Infect Immun, 1998, 66(6): 2426-2433. doi: 10.1128/IAI.66.6.2426-2433.1998.
doi: 10.1128/IAI.66.6.2426-2433.1998 pmid: 9596698 |
[52] |
Johnson JL, Ssekasanvu E, Okwera A, et al. Randomized trial of adjunctive interleukin-2 in adults with pulmonary tuberculosis. Am J Respir Crit Care Med, 2003, 168(2): 185-191. doi: 10.1164/rccm.200211-1359OC.
doi: 10.1164/rccm.200211-1359OC URL |
[53] |
Zhang R, Xi X, Wang C, et al. Therapeutic effects of recombinant human interleukin 2 as adjunctive immunotherapy against tuberculosis: A systematic review and meta-analysis. PLoS One, 2018, 13(7): e0201025. doi: 10.1371/journal.pone.0201025.
doi: 10.1371/journal.pone.0201025 |
[54] |
Shen H, Yang E, Guo M, et al. Adjunctive Zoledronate+ IL-2 administrations enhance anti-tuberculosis Vgamma 2 Vdelta 2 T-effector populations, and improve treatment outcome of multidrug-resistant tuberculosis. Emerg Microbes Infect, 2022, 11(1): 1790-1805. doi: 10.1080/22221751.2022.2095930.
doi: 10.1080/22221751.2022.2095930 URL |
[55] |
Tan Q, Min R, Dai GQ, et al. Clinical and Immunological Effects of rhIL-2 Therapy in Eastern Chinese Patients with Multidrug-resistant Tuberculosis. Sci Rep, 2017, 7(1): 17854. doi: 10.1038/s41598-017-18200-5.
doi: 10.1038/s41598-017-18200-5 URL |
[56] |
von Freeden-Jeffry U, Vieira P, Lucian LA, et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med, 1995, 181(4): 1519-1526. doi: 10.1084/jem.181.4.1519.
doi: 10.1084/jem.181.4.1519 pmid: 7699333 |
[57] |
Lundtoft C, Afum-Adjei Awuah A, Rimpler J, et al. Aberrant plasma IL-7 and soluble IL-7 receptor levels indicate impaired T-cell response to IL-7 in human tuberculosis. PLoS Pathog, 2017, 13(6): e1006425. doi: 10.1371/journal.ppat.1006425.
doi: 10.1371/journal.ppat.1006425 |
[58] |
Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol, 2003, 3(2): 133-146. doi: 10.1038/nri1001.
doi: 10.1038/nri1001 pmid: 12563297 |
[59] |
Tang C, Yamada H, Shibata K, et al. IL-15 protects antigen-specific CD8+ T cell contraction after Mycobacterium bovis bacillus Calmette-Guérin infection. J Leukoc Biol, 2009, 86(1): 187-794. doi: 10.1189/jlb.0608363.
doi: 10.1189/jlb.0608363 URL |
[60] |
Wu B, Huang C, Kato-Maeda M, et al. Messenger RNA expression of IL-8, FOXP3, and IL-12beta differentiates latent tuberculosis infection from disease. J Immunol, 2007, 178(6): 3688-3694. doi: 10.4049/jimmunol.178.6.3688.
doi: 10.4049/jimmunol.178.6.3688 pmid: 17339466 |
[61] |
Houben RM, Dodd PJ. The Global Burden of Latent Tuberculosis Infection: A Re-estimation Using Mathematical Modelling. PLoS Med, 2016, 13(10): e1002152. doi: 10.1371/journal.pmed.1002152.
doi: 10.1371/journal.pmed.1002152 |
[62] |
Hong JT, Son DJ, Lee CK, et al. Interleukin 32, inflammation and cancer. Pharmacol Ther, 2017, 174: 127-137. doi: 10.1016/j.pharmthera.2017.02.025.
doi: 10.1016/j.pharmthera.2017.02.025 URL |
[63] |
Netea MG, Azam T, Lewis EC, et al. Mycobacterium tuberculosis induces interleukin-32 production through a caspase-1/IL-18/interferon-gamma-dependent mechanism. PLoS Med, 2006, 3(8): e277. doi: 10.1371/journal.pmed.0030277.
doi: 10.1371/journal.pmed.0030277 URL |
[64] |
Cinti S, Coffey M, Sullivan A, et al. Killing of Mycobacterium avium by neutrophils and monocytes from AIDS patients treated with recombinant granulocyte-macrophage colony-stimulating factor. J Infect Dis, 1999, 180(1): 229-233. doi: 10.1086/314851.
doi: 10.1086/314851 pmid: 10353887 |
[65] |
Deotare U, Al-Dawsari G, Couban S, et al. G-CSF-primed bone marrow as a source of stem cells for allografting: revisiting the concept. Bone Marrow Transplant, 2015, 50(9): 1150-1156. doi: 10.1038/bmt.2015.80.
doi: 10.1038/bmt.2015.80 URL |
[66] |
Roy E, Brennan J, Jolles S, et al. Beneficial effect of anti-interleukin-4 antibody when administered in a murine model of tuberculosis infection. Tuberculosis (Edinb), 2008, 88(3): 197-202. doi: 10.1016/j.tube.2007.11.005.
doi: 10.1016/j.tube.2007.11.005 URL |
[67] |
Rosas-Taraco AG, Higgins DM, Sanchez-Campillo J, et al. Local pulmonary immunotherapy with siRNA targeting TGFbeta 1 enhances antimicrobial capacity in Mycobacterium tuberculosis infected mice. Tuberculosis (Edinb), 2011, 91(1): 98-106. doi: 10.1016/j.tube.2010.11.004.
doi: 10.1016/j.tube.2010.11.004 URL |
[68] |
Park J, Kim H, Kwon KW, et al. Toll-like receptor 4 signaling-mediated responses are critically engaged in optimal host protection against highly virulent Mycobacterium tuberculosis K infection. Virulence, 2020, 11(1): 430-445. doi: 10.1080/21505594.2020.1766401.
doi: 10.1080/21505594.2020.1766401 URL |
[69] |
Orme IM. Vaccines to prevent tuberculosis infection rather than disease: Physiological and immunological aspects. Tuberculosis (Edinb), 2016, 101: 210-216. doi: 10.1016/j.tube.2014.10.008.
doi: 10.1016/j.tube.2014.10.008 URL |
[70] |
Li H, Javid B. Antibodies and tuberculosis: finally coming of age? Nat Rev Immunol, 2018, 18(9): 591-596. doi: 10.1038/s41577-018-0028-0.
doi: 10.1038/s41577-018-0028-0 pmid: 29872140 |
[71] |
Achkar JM, Prados-Rosales R. Updates on antibody functions in Mycobacterium tuberculosis infection and their relevance for developing a vaccine against tuberculosis. Curr Opin Immunol, 2018, 53: 30-37. doi: 10.1016/j.coi.2018.04.004.
doi: 10.1016/j.coi.2018.04.004 URL |
[72] |
Achkar JM, Casadevall A. Antibody-mediated immunity against tuberculosis: implications for vaccine development. Cell Host Microbe, 2013, 13(3): 250-262. doi: 10.1016/j.chom.2013.02.009.
doi: 10.1016/j.chom.2013.02.009 pmid: 23498951 |
[73] |
Abate G, Blazevic A, et al. Enhancement of innate and cell-mediated immunity by antimycobacterial antibodies. Infect Immun, 2005, 73(10): 6711-6720. doi: 10.1128/IAI.73.10.6711-6720.2005.
doi: 10.1128/IAI.73.10.6711-6720.2005 pmid: 16177348 |
[74] |
Chen T, Blanc C, Eder AZ, et al. Association of Human Antibodies to Arabinomannan With Enhanced Mycobacterial Opsonophagocytosis and Intracellular Growth Reduction. J Infect Dis, 2016, 214(2): 300-310. doi: 10.1093/infdis/jiw141.
doi: 10.1093/infdis/jiw141 pmid: 27056953 |
[75] |
Lu LL, Chung AW, Rosebrock TR, et al. A Functional Role for Antibodies in Tuberculosis. Cell, 2016, 167(2): 433-443 e414. doi: 10.1016/j.cell.2016.08.072.
doi: S0092-8674(16)31170-9 pmid: 27667685 |
[76] |
Zimmermann N, Thormann V, Hu B, et al. Human isotype-dependent inhibitory antibody responses against Mycobacterium tuberculosis. EMBO Mol Med, 2016, 8(11): 1325-1339. doi: 10.15252/emmm.201606330.
doi: 10.15252/emmm.201606330 pmid: 27729388 |
[77] |
Li H, Wang XX, Wang B, et al. Latently and uninfected healthcare workers exposed to TB make protective antibodies against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A, 2017, 114(19): 5023-5028. doi: 10.1073/pnas.1611776114.
doi: 10.1073/pnas.1611776114 URL |
[78] |
Prados-Rosales R, Carreno L, Cheng T, et al. Enhanced control of Mycobacterium tuberculosis extrapulmonary dissemination in mice by an arabinomannan-protein conjugate vaccine. PLoS Pathog, 2017, 13(3): e1006250. doi: 10.1371/journal.ppat.1006250.
doi: 10.1371/journal.ppat.1006250 |
[79] |
Zuany-Amorim C, Sawicka E, Manlius C, et al. Suppression of airway eosinophilia by killed Mycobacterium vaccae-induced allergen-specific regulatory T-cells. Nat Med, 2002, 8(6): 625-629. doi: 10.1038/nm0602-625.
doi: 10.1038/nm0602-625 pmid: 12042815 |
[80] | 沈星灿, 徐庆, 戴志刚, 等. 结核及耐药结核的个性化卵黄多克隆抗体制剂及其制备方法与应用: CN200810073528.6. 2008-08-27. |
[81] |
Sudjarwo SA, Eraiko K, Sudjarwo GW, et al. The activity of immunoglobulin y anti-Mycobacterium tuberculosis on proliferation and cytokine expression of rat peripheral blood mononuclear cells. Pharmacognosy Res, 2017, 9(Suppl 1): S5-S8. doi: 10.4103/pr.pr_66_17.
doi: 10.4103/pr.pr_66_17 |
[82] |
Sudjarwo SA, Eraiko K, Sudjarwo GW, et al. The potency of chicken egg yolk immunoglobulin (IgY) specific as immunotherapy to Mycobacterium tuberculosis infection. J Adv Pharm Technol Res, 2017, 8(3): 91-96. doi: 10.4103/japtr.JAPTR_167_16.
doi: 10.4103/japtr.JAPTR_167_16 |
[83] |
汤道玲, 袁海星, 徐强. 小分子活性肽的营养研究进展. 中国畜牧业, 2004(24): 62-64. doi: 10.3969/j.issn.2095-2473.2004.24.028.
doi: 10.3969/j.issn.2095-2473.2004.24.028 |
[84] |
Kirkpatrick CH. Transfer factor. J Allergy Clin Immunol, 1988, 81(5 Pt 1):803-813. doi: 10.1016/0091-6749(88)90935-9.
doi: 10.1016/0091-6749(88)90935-9 URL |
[85] |
Fabre RA, Perez TM, Aguilar LD, et al. Transfer factors as immunotherapy and supplement of chemotherapy in experimental pulmonary tuberculosis. Clin Exp Immunol, 2004, 136(2): 215-223. doi: 10.1111/j.1365-2249.2004.02454.x.
doi: 10.1111/j.1365-2249.2004.02454.x pmid: 15086383 |
[86] |
Kind CH, Gartmann JC, Grob PJ. Transfer factor therapy in a patient with anergic pulmonary tuberculosis. Schweiz Med Wochenschr, 1977, 107(48): 1742-1743.
pmid: 929133 |
[87] |
Adam L, Lopez-Gonzalez M, Bjork A, et al. Early Resistance of Non-virulent Mycobacterial Infection in C57BL/ 6 Mice Is Associated With Rapid Up-Regulation of Antimicrobial Cathelicidin Camp. Front Immunol, 2018, 9: 1939. doi: 10.3389/fimmu.2018.01939.
doi: 10.3389/fimmu.2018.01939 URL |
[88] |
Silva JP, Goncalves C, Costa C, et al. Delivery of LLKKK18 loaded into self-assembling hyaluronic acid nanogel for tuberculosis treatment. J Control Release, 2016, 235: 112-124. doi: 10.1016/j.jconrel.2016.05.064.
doi: 10.1016/j.jconrel.2016.05.064 URL |
[89] |
Sharma A, Vaghasiya K, Gupta P, et al. Reclaiming hijacked phagosomes: Hybrid nano-in-micro encapsulated MIAP peptide ensures host directed therapy by specifically augmenting phagosome-maturation and apoptosis in TB infected macrophage cells. Int J Pharm, 2018, 536(1): 50-62. doi: 10.1016/j.ijpharm.2017.11.046.
doi: 10.1016/j.ijpharm.2017.11.046 URL |
[90] |
Rivas-Santiago B, Castaneda-Delgado JE, Rivas Santiago CE, et al. Ability of innate defence regulator peptides IDR-1002, IDR-HH2 and IDR-1018 to protect against Mycobacterium tuberculosis infections in animal models. PLoS One, 2013, 8(3): e59119. doi: 10.1371/journal.pone.0059119.
doi: 10.1371/journal.pone.0059119 |
[91] |
Morrison NE, Collins FM. Restoration of T-cell responsiveness by thymosin: development of antituberculous resistance in BCG-infected animals. Infect Immun, 1976, 13(2): 554-563. doi: 10.1128/iai.13.2.554-563.1976.
doi: 10.1128/iai.13.2.554-563.1976 pmid: 770334 |
[92] | Vladimirsky MA, Streltsov VP, Buchmann VM. In vitro restoration by thymosin of T lymphocytes from patients with lung tuberculosis. Biomedicine, 1978, 29(1): 3-5. |
[93] |
Kang YJ, Jo JO, Ock MS, et al. Over-expression of thymosin beta 4 in granulomatous lung tissue with active pulmonary tuberculosis. Tuberculosis (Edinb), 2014, 94(3): 323-331. doi: 10.1016/j.tube.2014.01.003.
doi: 10.1016/j.tube.2014.01.003 URL |
[94] |
吴伯华, 曹永胜, 陈搏智. 胸腺肽联合抗结核药治疗复治涂阳肺结核观察. 现代临床医学, 2018, 2018(1): 58-59. doi: 10.11851/j.issn.1673-1557.2018.01.021.
doi: 10.11851/j.issn.1673-1557.2018.01.021 |
[95] |
刘顶坤, 刘海清, 程国玲, 等. 胸腺肽在复治肺结核的临床疗效. 临床肺科杂志, 2019, 24(7): 1289-1292. doi: 10.3969/j.issn.1009-6663.2019.07.032.
doi: 10.3969/j.issn.1009-6663.2019.07.032 |
[96] | 刘剑波, 夏熙郑, 齐景宪. 保尔佳辅助肺结核化疗的临床及实验研究. 医药论坛杂志, 1995(11): 30-31. |
[97] |
岳俊伊, 张健. 抗菌肽抗结核作用的研究进展. 重庆医学, 2010, 39(19): 2673-2675. doi: 10.3969/j.issn.1671-8348.2010.19.058.
doi: 10.3969/j.issn.1671-8348.2010.19.058 |
[98] |
Wieczorek M, Jenssen H, Kindrachuk J, et al. Structural studies of a peptide with immune modulating and direct antimicrobial activity. Chem Biol, 2010, 17(9): 970-980. doi: 10.1016/j.chembiol.2010.07.007.
doi: 10.1016/j.chembiol.2010.07.007 URL |
[99] |
Bowdish DM, Davidson DJ, Scott MG, et al. Immunomodulatory activities of small host defense peptides. Antimicrob Agents Chemother, 2005, 49(5): 1727-1732. doi: 10.1128/AAC.49.5.1727-1732.2005.
doi: 10.1128/AAC.49.5.1727-1732.2005 pmid: 15855488 |
[100] |
Haney EF, Hunter HN, Matsuzaki K, et al. Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? Biochim Biophys Acta, 2009, 1788(8): 1639-1655. doi: 10.1016/j.bbamem.2009.01.002.
doi: 10.1016/j.bbamem.2009.01.002 pmid: 19272309 |
[101] |
AlMatar M, Makky EA, Yakici G, et al. Antimicrobial peptides as an alternative to anti-tuberculosis drugs. Pharmacol Res, 2018, 128: 288-305. doi: 10.1016/j.phrs.2017.10.011.
doi: S1043-6618(17)31051-4 pmid: 29079429 |
[102] |
邓兆群, 屈雪菊, 刘君炎, 等. 抗菌肽体外对结核杆菌的作用初探. 氨基酸和生物资源, 2002, 24(1): 44-45. doi: 10.3969/j.issn.1006-8376.2002.01.017.
doi: 10.3969/j.issn.1006-8376.2002.01.017 |
[103] |
Padhi A, Sengupta M, Sengupta S, et al. Antimicrobial peptides and proteins in mycobacterial therapy: current status and future prospects. Tuberculosis (Edinb), 2014, 94(4): 363-373. doi: 10.1016/j.tube.2014.03.011.
doi: 10.1016/j.tube.2014.03.011 URL |
[104] |
Saravolatz LD, Pawlak J, Johnson L, et al. In vitro activities of LTX-109, a synthetic antimicrobial peptide, against methicillin-resistant, vancomycin-intermediate, vancomycin-resis-tant, daptomycin-nonsusceptible, and linezolid-nonsusceptible Staphylococcus aureus. Antimicrob Agents Chemother, 2012, 56(8): 4478-4482. doi: 10.1128/AAC.00194-12.
doi: 10.1128/AAC.00194-12 pmid: 22585222 |
[105] |
van der Does AM, Hensbergen PJ, Bogaards SJ, et al. The human lactoferrin-derived peptide hLF1- 11 exerts immunomodulatory effects by specific inhibition of myeloperoxidase activity. J Immunol, 2012, 188(10): 5012-5019. doi: 10.4049/jimmunol.1102777.
doi: 10.4049/jimmunol.1102777 URL |
[106] |
Rubinchik E, Dugourd D, Algara T, et al. Antimicrobial and antifungal activities of a novel cationic antimicrobial peptide, omiganan, in experimental skin colonisation models. Int J Antimicrob Agents, 2009, 34(5): 457-461. doi: 10.1016/j.ijantimicag.2009.05.003.
doi: 10.1016/j.ijantimicag.2009.05.003 URL |
[107] |
陈晓北. 胸腺肽对结核病辅助治疗作用概述. 中国现代药物应用, 2011, 5(21): 119-120. doi: 10.3969/j.issn.1673-9523.2011.21.112.
doi: 10.3969/j.issn.1673-9523.2011.21.112 |
[108] |
Romani L, Oikonomou V, Moretti S, et al. Thymosin alpha1 represents a potential potent single-molecule-based therapy for cystic fibrosis. Nat Med, 2017, 23(5): 590-600. doi: 10.1038/nm.4305.
doi: 10.1038/nm.4305 URL |
[109] | 张世馥, 汪万英, 洪先知, 等. 溶菌酶在结核病中的分布及意义. 中华病理学杂志, 1993, 22(2): 80-82. |
[110] |
Ahmad S. Pathogenesis, immunology, and diagnosis of latent Mycobacterium tuberculosis infection. Clin Dev Immunol, 2011, 2011: 814943. doi: 10.1155/2011/814943.
doi: 10.1155/2011/814943 |
[111] |
Sethi D, Mahajan S, Singh C, et al. Lipoprotein LprI of Mycobacterium tuberculosis acts as a lysozyme inhibitor. J Biol Chem, 2016, 291(6): 2938-2953. doi: 10.1074/jbc.M115.662593.
doi: 10.1074/jbc.M115.662593 URL |
[1] | 邓国防, 王庆文. 重视风湿性疾病合并结核感染的多学科诊治[J]. 中国防痨杂志, 2022, 44(9): 865-868. |
[2] | 国家感染性疾病临床医学研究中心/深圳市第三人民医院, 北京大学深圳医院, 中国医学科学院北京协和医院, 中国防痨协会, 《中国防痨杂志》编辑委员会, 深圳市炎症与免疫性疾病重点实验室. 风湿性疾病患者合并结核分枝杆菌潜伏感染诊治的专家共识[J]. 中国防痨杂志, 2022, 44(9): 869-879. |
[3] | 中华医学会结核病学分会超声专业委员会, 中国医师协会介入医师分会超声介入专业委员会单位. 结核性胸膜炎超声诊断、分型及介入治疗专家共识(2022年版)[J]. 中国防痨杂志, 2022, 44(9): 880-897. |
[4] | 包容, 高建峰, 饶艳. 实验性肺结核病变类型与特点[J]. 中国防痨杂志, 2022, 44(9): 898-905. |
[5] | 王玉香, 陈秋奇, 余鑫鑫, 詹森林, 张培泽, 邓国防. 3HP方案治疗风湿性疾病合并结核分枝杆菌潜伏感染的前瞻性研究[J]. 中国防痨杂志, 2022, 44(9): 906-910. |
[6] | 谢静仪, 邹瑞丰, 陈玉兰, 陈永, 刘冬舟, 洪小平. 系统性红斑狼疮合并结核感染临床特征及外周血淋巴细胞亚群分析[J]. 中国防痨杂志, 2022, 44(9): 911-916. |
[7] | 程晓, 陈哲, 焦雪峰, 杨楠, 刁莎, 倪晓凤, 刘峥, 何思颐, 曾力楠, 万朝敏, 康德英, 吴斌, 应斌武, 张慧, 赵荣生, 张伶俐. 重组结核杆菌融合蛋白(EC)用于诊断结核分枝杆菌感染的有效性和安全性系统评价[J]. 中国防痨杂志, 2022, 44(9): 917-926. |
[8] | 王倪, 黄飞, 竺丽梅, 曾谊, 张瑞梅, 耿红, 刘学法, 郑建刚, 宗佩兰, 曾忠, 李进岚, 蔡翠, 郭晓红, 钟引, 刘莉, 谢艳, 杜芳芳, 周林, 成诗明. 提高抗结核药品固定剂量复合剂在省市级结核病定点医院推广使用的实施性研究[J]. 中国防痨杂志, 2022, 44(9): 927-933. |
[9] | 魏赣辉, 张加成, 邱小伟. 容积CT值量化判断5mm以上肺结核病灶活动性的应用价值[J]. 中国防痨杂志, 2022, 44(9): 934-939. |
[10] | 王潮虹, 孙晴, 廖鑫磊, 晏君, 王晨倩, 姜广路, 王芬, 薛毅, 黄海荣, 王桂荣. 231例脊柱结核患者耐药情况分析[J]. 中国防痨杂志, 2022, 44(9): 940-946. |
[11] | 聂廷月, 陈伟, 张洁莹, 曹红, 钱冰, 顾颖强, 刘旭祥. 2009—2020年合肥市肺结核空间特征分析[J]. 中国防痨杂志, 2022, 44(9): 947-953. |
[12] | 吴文琪, 钟剑球, 何娟, 邓国防, 王庆文. 风湿性疾病患者结核分枝杆菌潜伏感染激活机制的研究进展[J]. 中国防痨杂志, 2022, 44(9): 954-959. |
[13] | 陈秋奇, 韩婷婷, 王庆文, 邓国防. 风湿性疾病合并结核分枝杆菌潜伏感染的诊治进展[J]. 中国防痨杂志, 2022, 44(9): 960-965. |
[14] | 韩旭, 关尚琪, 石银朋, 梅轶芳. 非肿瘤坏死因子靶向药物治疗类风湿关节炎的结核感染风险研究进展[J]. 中国防痨杂志, 2022, 44(9): 966-972. |
[15] | 姚蓉, 陆宇. 抗结核药物贝达喹啉的耐药情况及其耐药机制研究进展[J]. 中国防痨杂志, 2022, 44(9): 973-977. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||