[1] |
World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020.
|
[2] |
Rosales-Klintz S, Jureen P, Zalutskayae A, et al. Drug resis-tance-related mutations in multidrug-resistant Mycobacterium tuberculosis isolates from diverse geographical regions. Int J Mycobacteriol, 2012,1(3):124-130. doi: 10.1016/j.ijmyco.2012.08.001.
doi: 10.1016/j.ijmyco.2012.08.001
URL
pmid: 26787207
|
[3] |
Seifert M, Catanzaro D, Catanzaro A, et al. Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One, 2015,10(3):e0119628. doi: 10.1371/journal.pone.0119628.
doi: 10.1371/journal.pone.0119628
URL
pmid: 25799046
|
[4] |
赵雁林, 逄宇. 结核病实验室检验规程. 北京: 人民卫生出版社, 2015: 32.
|
[5] |
Abuali MM, Katariwala R, LaBombardi VJ. A comparison of the Sensititre(R) MYCOTB panel and the agar proportion method for the susceptibility testing of Mycobacterium tuberculosis. Eur J Clin Microbiol, 2012,31(5):835-839. doi: 10.1007/s10096-011-1382-z.
doi: 10.1007/s10096-011-1382-z
URL
|
[6] |
Hall L, Jude KP, Clark SL, et al. Evaluation of the Sensititre MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. J Clin Microbiol, 2012,50(11):3732-3734. doi: 10.1128/JCM.02048-12.
doi: 10.1128/JCM.02048-12
URL
pmid: 22895034
|
[7] |
郑扬, 夏辉, 赵雁林. TREK Sensititre® MYCOTB 检测结核分枝杆菌对一、二线抗结核药物的敏感性研究 . 中国防痨杂志, 2015,37(6):597-602. doi: 10.3969/j.issn.1000-6621.2015.06.005.
|
[8] |
Coll F, McNerney R, Preston M, et al. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med, 2015,7(1):51. doi: 10.1186/s13073-015-0164-0.
doi: 10.1186/s13073-015-0164-0
URL
pmid: 26019726
|
[9] |
Miotto P, Zhang Y, Cirillo DM, et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018,23(12):1098-1113. doi: 10.1111/resp.13393.
doi: 10.1111/resp.13393
URL
pmid: 30189463
|
[10] |
Madrazo-Moya CF, Cancino-Munoz I, Cuevas-Cordoba B, et al. Whole genomic sequencing as a tool for diagnosis of drug and multidrug-resistance tuberculosis in an endemic region in Mexico. PLoS One, 2019,14(6):e0213046. doi: 10.1371/journal.pone.0213046.
doi: 10.1371/journal.pone.0213046
URL
pmid: 31166945
|
[11] |
Kardan-Yamchi J, Kazemian H, Battaglia S, et al. Whole Genome Sequencing Results Associated with Minimum Inhibitory Concentrations of 14 Anti-Tuberculosis Drugs among Rifampicin-Resistant Isolates of Mycobacterium Tuberculosis from Iran. J Clin Med, 2020,9(2):465. doi: 10.3390/jcm9020465.
|
[12] |
Tang K, Sun H, Zhao Y, et al. Characterization of rifampin-resistant isolates of Mycobacterium tuberculosis from Sichuan in China. Tuberculosis (Edinb), 2013,93(1):89-95. doi: 10.1016/j.tube.2012.10.009.
|
[13] |
Tavanaee Sani A, Ashna H, Kaffash A, et al. Mutations of rpob Gene Associated with Rifampin Resistance among Mycobacterium Tuberculosis Isolated in Tuberculosis Regional Reference Laboratory in Northeast of Iran during 2015-2016. Ethiop J Health Sci, 2018,28(3):299-304. doi: 10.4314/ejhs.v28i3.7.
doi: 10.4314/ejhs.v28i3.7
URL
pmid: 29983529
|
[14] |
Andre E, Goeminne L, Colmant A, et al. Novel rapid PCR for the detection of Ile491Phe rpoB mutation of Mycobacterium tuberculosis, a rifampicin-resistance-conferring mutation undetected by commercial assays. Clin Microbiol Infect, 2017,23(4):267.e5-267.e7. doi: 10.1016/j.cmi.2016.12.009.
|
[15] |
Chen L, Gan X, Li N, et al. rpoB gene mutation profile in rifampicin-resistant Mycobacterium tuberculosis clinical isolates from Guizhou, one of the highest incidence rate regions in China. J Antimicrob Chemoth, 2010,65(6):1299-1301. doi: 10.1093/jac/dkq102.
|
[16] |
Jamieson FB, Guthrie JL, Neemuchwala A, et al. Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J Clin Microbiol, 2014,52(6):2157-2162. doi: 10.1128/JCM.00691-14.
doi: 10.1128/JCM.00691-14
URL
pmid: 24740074
|
[17] |
Van Deun A, Aung KJ, Bola V, et al. Rifampin drug resis-tance tests for tuberculosis: challenging the gold standard. J Clin Microbiol, 2013,51(8):2633-2640. doi: 10.1128/JCM.00553-13.
doi: 10.1128/JCM.00553-13
URL
pmid: 23761144
|
[18] |
Torrea G, Ng K, Van Deun A, et al. Variable ability of rapid tests to detect mycobacterium tuberculosis rpob mutations conferring phenotypically occult rifampicin resistance. Scientific reports, 2019,9:11826. doi: 10.1038/s41598-019-48401-z.
doi: 10.1038/s41598-019-48401-z
URL
pmid: 31413308
|
[19] |
Liu L, Jiang F, Chen L, et al. The impact of combined gene mutations in inhA and ahpC genes on high levels of isoniazid resistance amongst katG non-315 in multidrug-resistant tuberculosis isolates from China. Emerg Microbes Infec, 2018,7(1):183. doi: 10.1038/s41426-018-0184-0.
|
[20] |
Dookie N, Rambaran S, Padayatchi N, et al. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemoth, 2018,73(5):1138-1151. doi: 10.1093/jac/dkx506.
|
[21] |
Jagielski T, Bakula Z, Roeske K, et al. Mutation profiling for detection of isoniazid resistance in Mycobacterium tuberculosis clinical isolates. J Antimicrob Chemoth, 2015,70(12):3214-3221. doi: 10.1093/jac/dkv253.
|
[22] |
Zhang M, Yue J, Yang YP, et al. Detection of mutations associated with isoniazid resistance in Mycobacterium tuberculosis isolates from China. J Clin Microbiol, 2005,43(11):5477-5482. doi: 10.1128/JCM.43.11.5477-5482.2005.
doi: 10.1128/JCM.43.11.5477-5482.2005
URL
pmid: 16272473
|
[23] |
Kigozi E, Kasule GW, Musisi K, et al. Prevalence and patterns of rifampicin and isoniazid resistance conferring mutations in Mycobacterium tuberculosis isolates from Uganda. PLoS One, 2018,13(5):e0198091. doi: 10.1371/journal.pone.0198091.
doi: 10.1371/journal.pone.0198091
URL
pmid: 29847567
|
[24] |
Katiyar SK, Bihari S, Prakash S, et al. A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis, 2008,12(2):139-145.
URL
pmid: 18230245
|
[25] |
Walsh KF, Vilbrun SC, Souroutzidis A, et al. Improved Outcomes With High-dose Isoniazid in Multidrug-resistant Tuberculosis Treatment in Haiti. Clin Infect Dis, 2019,69(4):717-719. doi: 10.1093/cid/ciz039.
doi: 10.1093/cid/ciz039
URL
pmid: 30698688
|
[26] |
Colangeli R, Jedrey H, Kim S, et al. Bacterial Factors That Predict Relapse after Tuberculosis Therapy. New Engl J Med, 2018,379(9):823-833. doi: 10.1056/NEJMoa1715849.
doi: 10.1056/NEJMoa1715849
URL
pmid: 30157391
|