[1] |
World Health Organization. Global tuberculosis report 2020. Geneva:World Health Organization, 2020.
|
[2] |
Patel R. Biofilms and antimicrobial resistance. Clin Orthop Relat Res, 2005,(437):41-47. doi: 10.1097/01.blo.0000175714.68624.74.
doi: 10.1097/01.blo.0000175714.68624.74
|
[3] |
Seral C, Van Bambeke F, Tulkens PM. Quantitative analysis of gentamicin, azithromycin, telithromycin, ciprofloxacin, moxifloxacin, and oritavancin (LY333328) activities against intracellular Staphylococcus aureus in mouse J774 macrophages. Antimicrob Agents Chemother, 2003, 47(7):2283-2292. doi: 10.1128/aac.47.7.2283-2292.2003.
doi: 10.1128/aac.47.7.2283-2292.2003
URL
|
[4] |
Martinot AJ, Blass E, Yu J, et al. Protective efficacy of an attenuated Mtb ΔLprG vaccine in mice. PLoS Pathogens, 2020, 16(12):e1009096. doi: 10.1371/journal.ppat.1009096.
doi: 10.1371/journal.ppat.1009096
pmid: 33315936
|
[5] |
刘毅, 张亚莉, 张旭霞, 等. 结核分枝杆菌感染和免疫逃逸机制研究进展. 中华微生物学和免疫学杂志, 2015, 35(5):398-400. doi: 10.3760/cma.j.issn.0254-5101.2015.05.015.
doi: 10.3760/cma.j.issn.0254-5101.2015.05.015
|
[6] |
Lye DC, Earnest A, Ling ML, et al. The impact of multidrug resistance in healthcare-associated and nosocomial Gram-negative bacteraemia on mortality and length of stay: cohort study. Clin Microbiol Infect, 2012, 18(5):502-508. doi: 10.1111/j.1469-0691.2011.03606.x.
doi: 10.1111/j.1469-0691.2011.03606.x
URL
|
[7] |
Pym AS, Saint-Joanis B, Cole ST. Effect of katG Mutations on the Virulence of Mycobacterium tuberculosis and the Implication for Transmission in Humans. Infect Immun, 2002, 70(9):4955-4960. doi: 10.1128/IAI.70.9.4955-4960.2002.
doi: 10.1128/IAI.70.9.4955-4960.2002
URL
|
[8] |
胡明豪, 徐建, 王彬, 等. 结核分枝杆菌对PA-824耐药的体外诱导及稳定性研究. 中国抗生素杂志, 2017, 42(2):144-148. doi: 10.3969/j.issn.1001-8689.2017.02.012.
doi: 10.3969/j.issn.1001-8689.2017.02.012
|
[9] |
Butler RE, Brodin P, Jang J, et al. The balance of apoptotic and necrotic cell death in Mycobacterium tuberculosis infected macrophages is not dependent on bacterial virulence. PLoS One, 2012, 7(10):e47573. doi: 10.1371/journal.pone.0047573.
doi: 10.1371/journal.pone.0047573
URL
|
[10] |
Danelishvili L, McGarvey J, Li YJ, et al. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol, 2003, 5(9):649-660. doi: 10.1046/j.1462-5822.2003.00312.x.
doi: 10.1046/j.1462-5822.2003.00312.x
pmid: 12925134
|
[11] |
Pedroza-Roldán C, Marquina-Castillo B, Mata-Espinosa D, et al. BCG constitutively expressing the adenylyl cyclase encoded by Rv2212 increases its immunogenicity and reduces replication of M.tuberculosis in lungs of BALB/c mice. Tuberculosis (Edinb), 2018, 113:19-25. doi: 10.1016/j.tube.2018.08.012.
doi: 10.1016/j.tube.2018.08.012
URL
|
[12] |
Derrick SC, Yang AL, Morris SL. A polyvalent DNA vaccine expressing an ESAT6-Ag85B fusion protein protects mice against a primary infection with Mycobacterium tuberculosis and boosts BCG-induced protective immunity. Vaccine, 2004, 23(6):780-788.
pmid: 15542202
|
[13] |
Miotto P, Zhang Y, Cirillo DM, et al. Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 2018, 23(12):1098-1113. doi: 10.1111/resp.13393.
doi: 10.1111/resp.13393
pmid: 30189463
|
[14] |
Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev, 2005, 18(1):81-101. doi: 10.1128/CMR.18.1.81-101.2005.
doi: 10.1128/CMR.18.1.81-101.2005
pmid: 15653820
|
[15] |
Manganelli R, Provvedi R, Rodrigue S, et al. Sigma factors and global gene regulation in Mycobacterium tuberculosis. J Bacteriol, 2004, 186(4):895-902. doi: 10.1128/jb.186.4.895-902.2004.
doi: 10.1128/JB.186.4.895-902.2004
pmid: 14761983
|
[16] |
Gagneux S, Long CD, Small PM, et al. The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science, 2006, 312(5782):1944-1946. doi: 10.1126/science.1124410.
doi: 10.1126/science.1124410
URL
|
[17] |
Pym AS, Saint-Joanis B, Cole ST. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect Immun, 2002, 70(9):4955-4960. doi: 10.1128/iai.70.9.4955-4960.2002.
doi: 10.1128/iai.70.9.4955-4960.2002
URL
|
[18] |
Cohen T, Becerra MC, Murray MB. Isoniazid resistance and the future of drug-resistant tuberculosis. Microb Drug Resist, 2004, 10(4):280-285. doi: 10.1089/mdr.2004.10.280.
doi: 10.1089/mdr.2004.10.280
pmid: 15650371
|
[19] |
Casali N, Nikolayevskyy V, Balabanova Y, et al. Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet, 2014, 46(3):279-286. doi: 10.1038/ng.2878.
doi: 10.1038/ng.2878
URL
|
[20] |
de Vos M, Müller B, Borrell S, et al. Putative compensatory mutations in the rpoC gene of rifampin-resistant Mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother, 2013, 57(2):827-832. doi: 10.1128/AAC.01541-12.
doi: 10.1128/AAC.01541-12
pmid: 23208709
|
[21] |
Comas I, Borrell S, Roetzer A, et al. Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet, 2011, 44(1):106-110. doi: 10.1038/ng.1038.
doi: 10.1038/ng.1038
URL
|
[22] |
Dey R, Nandi S, Samadder A, et al. Exploring the Potential Inhibition of Candidate Drug Molecules for Clinical Investigation Based on their Docking or Crystallographic Analyses against M.tuberculosis Enzyme Targets. Curr Top Med Chem, 2020, 20(29):2662-2680. doi: 10.2174/1568026620666200903163921.
doi: 10.2174/1568026620666200903163921
URL
|
[23] |
Briffotaux J, Huang W, Wang X, et al. MmpS5/MmpL5 as an efflux pump in Mycobacterium species. Tuberculosis (Edinb), 2017, 107:13-19. doi: 10.1016/j.tube.2017.08.001.
doi: 10.1016/j.tube.2017.08.001
URL
|
[24] |
Dookie N, Rambaran S, Padayatchi N, et al. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J Antimicrob Chemother, 2018, 73(5):1138-1151. doi: 10.1093/jac/dkx506.
doi: 10.1093/jac/dkx506
URL
|
[25] |
Weinreich DM, Watson RA, Chao L. Perspective: Sign epistasis and genetic constraint on evolutionary trajectories. Evolution, 2005, 59(6):1165-1174.
pmid: 16050094
|
[26] |
Zur WP, Kouyos R, Engelstädter J, et al. Population biological principles of drug-resistance evolution in infectious diseases. Lancet Infect Dis, 2011, 11(3):236-247. doi: 10.1016/S1473-3099(10)70264-4.
doi: 10.1016/S1473-3099(10)70264-4
URL
|
[27] |
Pieters J. Mycobacterium tuberculosis and the macrophage: maintaining a balance. Cell Host Microbe, 2008, 3(6):399-407. doi: 10.1016/j.chom.2008.05.006.
doi: 10.1016/j.chom.2008.05.006
pmid: 18541216
|
[28] |
Collins DM. In search of tuberculosis virulence genes. Trends Microbiol, 1996, 4(11):426-430. doi: 10.1016/0966-842x(96)10066-4.
doi: 10.1016/0966-842x(96)10066-4
pmid: 8950811
|
[29] |
Lee JH, Ammerman NC, Nolan S, et al. Isoniazid resistance without a loss of fitness in Mycobacterium tuberculosis. Nat Commun, 2012, 3:753. doi: 10.1038/ncomms1724.
doi: 10.1038/ncomms1724
URL
|
[30] |
Danelishvili L, McGarvey J, Li YJ, et al. Mycobacterium tuberculosis infection causes different levels of apoptosis and necrosis in human macrophages and alveolar epithelial cells. Cell Microbiol, 2003, 5(9):649-660. doi: 10.1046/j.1462-5822.2003.00312.x.
doi: 10.1046/j.1462-5822.2003.00312.x
pmid: 12925134
|