中国防痨杂志 ›› 2021, Vol. 43 ›› Issue (9): 867-873.doi: 10.3969/j.issn.1000-6621.2021.09.003
首都医科大学附属北京胸科医院, 《中国防痨杂志》编辑委员会
收稿日期:
2021-07-25
出版日期:
2021-09-10
发布日期:
2021-09-07
基金资助:
Beijing Chest Hospital, Capital Medical University, Editorial Board of Chinese Journal of Antituberculosis
Received:
2021-07-25
Online:
2021-09-10
Published:
2021-09-07
摘要:
治疗药物监测(therapeutic drug monitoring,TDM)是通过测定患者体内的药物暴露、药理标志物或药效指标,利用定量药理模型,以药物治疗窗为基准,指导制订适合患者的个体化给药方案。抗结核治疗过程中,存在药物浓度个体差异大、不良反应多等问题,可能导致治疗失败、耐药和复发。进行抗结核药物TDM,可以优化药物治疗方案,提高药物疗效,降低不良反应。为推进中国结核病TDM规范化,保证TDM的科学性、伦理性、合法性,使患者最大程度获益,经有关结核病临床和基础研究领域的专家反复讨论,就抗结核药物TDM的意义、适应证、检测方法、实施流程及TDM的质量控制等,制订了《抗结核药治疗药物监测临床应用专家共识》。
首都医科大学附属北京胸科医院, 《中国防痨杂志》编辑委员会. 抗结核药治疗药物监测临床应用专家共识[J]. 中国防痨杂志, 2021, 43(9): 867-873. doi: 10.3969/j.issn.1000-6621.2021.09.003
Beijing Chest Hospital, Capital Medical University, Editorial Board of Chinese Journal of Antituberculosis. Expert consensus on the therapeutic drug monitoring of anti-tuberculosis drugs[J]. Chinese Journal of Antituberculosis, 2021, 43(9): 867-873. doi: 10.3969/j.issn.1000-6621.2021.09.003
表1
抗结核药品主要PK参数[21, 38-39]
药品 | 剂量 | 峰浓度(Cmax,mg/L) | 达峰时间(Tmax,h) | 半衰期(T1/2) |
---|---|---|---|---|
异烟肼 | 300mg/次,1次/d 900mg/次,2次/周 | 3~6 9~15 | 0.75~2.0 0.75~2.0 | 0.75~1.8h(快代谢型), 2.0~4.5h(慢代谢型) 0.75~1.8h(快代谢型), 2.0~4.5h(慢代谢型) |
利福平 | 600mg/次,1次/d | 8~24 | 1.5~2.0 | 2~5h |
利福布汀 | 300mg/次,1次/d | 0.45~0.9 | 3~4 | 25~36h |
利福喷丁 | 600mg/次,1次/da | 8~30 | 5~6 | 14~18h |
乙胺丁醇 | 25mg·kg-1·d-1 50mg/kg,2次/周 | 2~6 4~12 | 2~4 2~4 | 双相消除2~4h,12~14h 双相消除2~4h,12~14h |
吡嗪酰胺 | 25~35mg·kg-1·d-1 50mg/kg,2次/周 | 20~60 60~90 | 1~2 1~2 | 10~24h 10~24h |
左氧氟沙星 | 500~1000mg/d | 8~13 | 1~2 | 9h |
莫西沙星 | 400mg/d | 2.5~5 | 1~2 | 7h |
环丙沙星 | 750mg/d | 4.3 | 1~2 | 4h |
加替沙星 | 400mg/d | 2.33~3.59 | 1~2 | 7~14h |
利奈唑胺 | 600mg/次,1次/d 300mg/次,2次/d | 12~26 12~26 | 1.5 1.5 | 5~6h 5~6h |
贝达喹啉 | 400mg/次,1次/d(前2周); 200mg/次,3次/周(2周后) | 2.8~3.3(2周); 1.7(8周);1.3(24周) | 4~6 | 5.5个月 |
环丝氨酸 | 250~500mg/d | 20~35 | 2 | 15.79~25.1h |
氯法齐明 | 100mg/次,1次/d | 0.5~2 | 2~7 | 双相消除 |
德拉马尼 | 100mg/次,2次/d | 1.35(开始),4.14(稳态) | 4 | 30~38h |
普托马尼 | 200mg/次,1次/d | 1.4~2.6(开始), 2.3~4.3(稳态) | 5 | 16h |
乙硫异烟胺 | 250~500mg/d | 2~5 | 1~3 | 2~3h |
丙硫异烟胺 | 250~500mg/d | 1~5 | 3 | - |
链霉素/卡那霉素/阿米卡星 | 15mg·kg-1·d-1 50mg/kg,2次/周 | 35~45 65~80 | 0.5~1.5肌内注射 0.5~1.5肌内注射 | 2~3h 2~3h |
对氨基水杨酸 | 4000mg/d | 41~68(游离酸), 76~104(钠盐) | 3~4(游离酸), 0.5~1(钠盐) | 2~3h |
表2
抗结核药品的PK参数和TDM[45]
药品 | 剂量 | 有效性PK/PD参数 | AUC(mg·h/L)a | 有限采样策略(h) |
---|---|---|---|---|
异烟肼 | 5mg·kg-1·d-1 | AUC/MIC>567(肺) | 52 | 1,2.5,6;1,6,8 |
利福平 | 10mg·kg-1·d-1 | AUC/MIC>271 AUC/MIC=435~683 | 38.7 13 | 1,3,8 2,4 |
乙胺丁醇 | 25mg·kg-1·d-1 | AUC/MIC>119 | - | 0,2.5,6;2,4,8 |
吡嗪酰胺 | 25~35mg·kg-1·d-1 | AUC/MIC>8.42 | 363 | 0,2,6;0,5,8 |
左氧氟沙星 | 750~1000mg/d | AUC/MIC>119; AUC/MIC>320(耐药) | 110(85~200)b | 0,5 |
莫西沙星 | 400mg/d | 游离药物AUC/MIC>42; 游离药物AUC/MIC>53(耐药) | 35(10~80)b | 0,1.5,6;0,6 |
利奈唑胺 | 600mg/d | 游离药物AUC/MIC=119 | 107.5±30.16c | 0,2 |
贝达喹啉 | 400mg/次,1次/d(前2周); 200mg,3次/周 | AUC0~168h/MIC或C均值/MIC | AUC0~168h:187(53~689)d | - |
环丝氨酸 | 250~750mg/d | T>MIC30% | - | 4 |
阿米卡星 | 15~20mg·kg-1·d-1 6.5mg·kg-1·d-1 | Cmax/MIC>75;AUC/MIC>103 Cmax/MIC>20 | 568 113(49~232)d | 1,4 1,4 |
对氨基水杨酸 | 4000mg/d | 游离药物Cmin>1mg/L | - | - |
链霉素 | 12~18mg·kg-1·d-1 | - | 197±26c | 1,6 |
乙硫异烟胺 | 250~500mg/d | AUC/MIC>56.2;游离药物 AUC/MIC=42 | - | - |
[1] | World Health Organization. Global tuberculosis report 2020. Geneva: World Health Organization, 2020. |
[2] |
中国药理学会治疗药物监测研究专业委员会. 治疗药物监测工作规范专家共识(2019版). 中国医院用药评价与分析, 2019, 19(8):897-898, 902. doi: 10.14009/j.issn.1672-2124.2019.08.001.
doi: 10.14009/j.issn.1672-2124.2019.08.001 |
[3] |
Park JS, Lee JY, Lee YJ, et al. Serum Levels of Antituberculosis Drugs and Their Effect on Tuberculosis Treatment Outcome. Antimicrob Agents Chemother, 2015, 60(1):92-98. doi: 10.1128/AAC.00693-15.
doi: 10.1128/AAC.00693-15 URL |
[4] |
Stott KE, Pertinez H, Sturkenboom MGG, et al. Pharmacokinetics of rifampicin in adult TB patients and healthy volunteers: a systematic review and meta-analysis. J Antimicrob Chemother, 2018, 73(9):2305-2313. doi: 10.1093/jac/dky152.
doi: 10.1093/jac/dky152 pmid: 29701775 |
[5] |
郭少晨, 朱慧, 郭超, 等. 909例结核病患者一线抗结核药物血药浓度监测结果分析. 中国防痨杂志, 2018, 40(7):744-749. doi: 10.3969/j.issn.1000-6621.2018.07.014.
doi: 10.3969/j.issn.1000-6621.2018.07.014 |
[6] |
Zhu H, Guo SC, Liu ZQ, et al. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis, 2018, 22(8):931-936. doi: 10.5588/ijtld.17.0648.
doi: 10.5588/ijtld.17.0648 pmid: 29991404 |
[7] |
Li J, Burzynski JN, Lee YA, et al. Use of therapeutic drug monitoring for multidrug-resistant tuberculosis patients. Chest, 2004, 126(6):1770-1776. doi: 10.1378/chest.126.6.1770.
doi: 10.1378/chest.126.6.1770 URL |
[8] |
Hung WY, Yu MC, Chiang YC, et al. Serum concentrations of cycloserine and outcome of multidrug-resistant tuberculosis in Northern Taiwan. Int J Tuberc Lung Dis, 2014, 18(5):601-606. doi: 10.5588/ijtld.13.0268.
doi: 10.5588/ijtld.13.0268 pmid: 24903799 |
[9] |
Falzon D, Jaramillo E, Gilpin C, et al. Therapeutic drug monitoring to prevent acquired drug resistance of fluoroquinolones in the treatment of tuberculosis. Eur Respir J, 2017, 49(4):1700317. doi: 10.1183/13993003.00317-2017.
doi: 10.1183/13993003.00317-2017 URL |
[10] |
Nahid P, Mase SR, Migliori GB, et al. Treatment of Drug-Resistant Tuberculosis. An Official ATS/CDC/ERS/IDSA Clinical Practice Guideline. Am J RespirCrit Care Med, 2019, 200(10):e93-e142. doi: 10.1164/rccm.201909-1874ST.
doi: 10.1164/rccm.201909-1874ST URL |
[11] |
Wilby KJ, Ensom MH, Marra F. Review of evidence for measuring drug concentrations of first-line antitubercular agents in adults. Clin Pharmacokinet, 2014, 53(10):873-890. doi: 10.1007/s40262-014-0170-1.
doi: 10.1007/s40262-014-0170-1 pmid: 25172553 |
[12] |
Sotgiu G, Alffenaar JW, Centis R, et al. Therapeutic drug monitoring: how to improve drug dosage and patient safety in tuberculosis treatment. Int J Infect Dis, 2015, 32:101-104. doi: 10.1016/j.ijid.2014.12.001.
doi: 10.1016/j.ijid.2014.12.001 URL |
[13] | World Health Organization. WHO conso1idated guidelines on drug-resistant tuberculosis treatment. Geneva: World Health Organization, 2019. |
[14] |
Kim HY, Ulbricht E, Ahn YK, et al. Therapeutic drug monitoring practice in patients with active tuberculosis: assessment of opportunities. Eur Respir J, 2021, 57(1):2002349. doi: 10.1183/13993003.02349-2020.
doi: 10.1183/13993003.02349-2020 URL |
[15] |
van Altena R, Dijkstra JA, van der Meer ME, et al. Reduced Chance of Hearing Loss Associated with Therapeutic Drug Monitoring of Aminoglycosides in the Treatment of Multidrug-Resistant Tuberculosis. Antimicrob Agents Chemother, 2017, 61(3):e01400-16. doi: 10.1128/AAC.01400-16.
doi: 10.1128/AAC.01400-16 |
[16] |
Vu DH, Alffenaar JW, Edelbroek PM, et al. Dried blood spots: a new tool for tuberculosis treatment optimization. Curr Pharm Des, 2011, 17(27):2931-2939. doi: 10.2174/138161211797470174.
doi: 10.2174/138161211797470174 URL |
[17] |
Vu DH, Koster RA, Alffenaar JW, et al. Determination of moxifloxacin in dried blood spots using LC-MS/MS and the impact of the hematocrit and blood volume. J Chromatogr B Analyt Technol Biomed Life Sci, 2011, 879(15/16):1063-1070. doi: 10.1016/j.jchromb.2011.03.017.
doi: 10.1016/j.jchromb.2011.03.017 URL |
[18] |
Vu DH, Bolhuis MS, Koster RA, et al. Dried blood spot analysis for therapeutic drug monitoring of linezolid in patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother, 2012, 56(11):5758-5763. doi: 10.1128/AAC.01054-12.
doi: 10.1128/AAC.01054-12 pmid: 22926568 |
[19] | 中华人民共和国国家药典委员会. 中华人民共和国药典(2015年版): 四部(通则0521). 北京:中国医药科技出版社, 2015: 59. |
[20] |
Choi R, Jeong BH, Koh WJ, et al. Recommendations for Optimizing Tuberculosis Treatment: Therapeutic Drug Monitoring, Pharmacogenetics, and Nutritional Status Considerations. Ann Lab Med, 2017, 37(2):97-107. doi: 10.3343/alm.2017.37.2.97.
doi: 10.3343/alm.2017.37.2.97 URL |
[21] |
Alsultan A, Peloquin CA. Therapeutic drug monitoring in the treatment of tuberculosis: an update. Drugs, 2014, 74(8):839-854. doi: 10.1007/s40265-014-0222-8.
doi: 10.1007/s40265-014-0222-8 URL |
[22] |
赵嫄, 雷倩, 党丽云, 等. 抗结核药物血药浓度监测工作的思考和展望. 中国防痨杂志, 2017, 39(11):1228-1232. doi: 10.3969/j.issn.1000-6621.2017.11.015.
doi: 10.3969/j.issn.1000-6621.2017.11.015 |
[23] |
Maze MJ, Paynter J, Chiu W, et al. Therapeutic drug monitoring of isoniazid and rifampicin during anti-tuberculosis treatment in Auckland, New Zealand. Int J Tuberc Lung Dis, 2016, 20(7):955-960. doi: 10.5588/ijtld.15.0792.
doi: 10.5588/ijtld.15.0792 pmid: 27287650 |
[24] |
Medellín-Garibay SE, Correa-López T, Romero-Méndez C, et al. Limited sampling strategies to predict the area under the concentration-time curve for rifampicin. Ther Drug Monit, 2014, 36(6):746-751. doi: 10.1097/FTD.0000000000000093.
doi: 10.1097/FTD.0000000000000093 pmid: 24784025 |
[25] |
Magis-Escurra C, Later-Nijland HM, Alffenaar JW, et al. Population pharmacokinetics and limited sampling strategy for first-line tuberculosis drugs and moxifloxacin. Int J Antimicrob Agents, 2014, 44(3):229-234. doi: 10.1016/j.ijantimicag.2014.04.019.
doi: 10.1016/j.ijantimicag.2014.04.019 URL |
[26] |
Alsultan A, An G, Peloquin CA. Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis. Antimicrob Agents Chemother, 2015, 59(7):3800-3807. doi: 10.1128/AAC.00341-15.
doi: 10.1128/AAC.00341-15 URL |
[27] |
Sturkenboom MG, Mulder LW, de Jager A, et al. Pharmacokinetic Modeling and Optimal Sampling Strategies for Therapeutic Drug Monitoring of Rifampin in Patients with Tuberculosis. Antimicrob Agents Chemother, 2015, 59(8):4907-4913. doi: 10.1128/AAC.00756-15.
doi: 10.1128/AAC.00756-15 pmid: 26055359 |
[28] |
Kamp J, Bolhuis MS, Tiberi S, et al. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis. Int J Antimicrob Agents, 2017, 49(6):688-694. doi: 10.1016/j.ijantimicag.2017.01.017.
doi: 10.1016/j.ijantimicag.2017.01.017 URL |
[29] |
van den Elsen SHJ, Sturkenboom MGG, Akkerman OW, et al. Limited Sampling Strategies Using Linear Regression and the Bayesian Approach for Therapeutic Drug Monitoring of Moxifloxacin in Tuberculosis Patients. Antimicrob Agents Chemother, 2019, 63(7):e00384-19. doi: 10.1128/AAC.00384-19.
doi: 10.1128/AAC.00384-19 |
[30] |
van den Elsen SHJ, Sturkenboom MGG, Van’tBoveneind-Vrubleuskaya N, et al. Population Pharmacokinetic Model and Limited Sampling Strategies for Personalized Dosing of Levofloxacin in Tuberculosis Patients. Antimicrob Agents Chemother, 2018, 62(12):e01092-18. doi: 10.1128/AAC.01092-18.
doi: 10.1128/AAC.01092-18 |
[31] | 朱慧, 李芃, 陆宇. LC-MS/MS方法同时检测人血浆中异烟肼、乙胺丁醇和吡嗪酰胺的浓度. 药物分析杂志, 2012, 32(6):945-949. |
[32] |
Alffenaar JW, Bolhuis M, van Hateren K, et al. Determination of bedaquiline in human serum using liquid chromatography-tandem mass spectrometry. Antimicrob Agents Chemother, 2015, 59(9):5675-5680. doi: 10.1128/AAC.00276-15.
doi: 10.1128/AAC.00276-15 URL |
[33] |
Meng M, Smith B, Johnston B, et al. Simultaneous quantitation of delamanid (OPC-67683) and its eight metabolites in human plasma using UHPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci, 2015, 1002:78-91. doi: 10.1016/j.jchromb.2015.07.058.
doi: 10.1016/j.jchromb.2015.07.058 pmid: 26319300 |
[34] |
Momin MAM, Thien SJ, Krittaphol W, et al. Simultaneous HPLC assay for pretomanid (PA-824), moxifloxacin and pyrazinamide in an inhaler formulation for drug-resistant tuberculosis. J Pharm Biomed Anal, 2017, 135:133-139. doi: 10.1016/j.jpba.2016.11.046.
doi: 10.1016/j.jpba.2016.11.046 URL |
[35] |
王恺隽, 潘媛媛, 邵立军, 等. 基于质谱技术的分析方法验证相关指导原则探讨. 中华检验医学杂志, 2020, 43(12):1166-1171. doi: 10.3760/cma.j.cn114452-20200717-00616.
doi: 10.3760/cma.j.cn114452-20200717-00616 |
[36] | US Food and Administration. Bioanalytical Method Validation Guidance for Industry [EB/OL].[2020-07-15]. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry. |
[37] | International Conference on Harmonisation. Internationalcouncil for harmonisation of technical requirements for pharmaceuticals for human use.M10: bioanalytical method validation[S/OL]. [2020-07-15]. https://database.ich.org/sites/default/files/M10_EWG_Draft_Guideline.pdf. |
[38] |
陆宇. 治疗药物监测与药物基因组学在优化抗结核治疗中的作用. 临床药物治疗杂志, 2018, 16(4):23-28. doi: 10.3969/j.issn.1672-3384.2018.04.006.
doi: 10.3969/j.issn.1672-3384.2018.04.006 |
[39] |
Märtson AG, Burch G, Ghimire S, et al. Therapeutic drug monitoring in patients with tuberculosis and concurrent medical problems. Expert Opin Drug Metab Toxicol, 2021, 17(1):23-39. doi: 10.1080/17425255.2021.1836158.
doi: 10.1080/17425255.2021.1836158 URL |
[40] |
Burhan E, Ruesen C, Ruslami R, et al. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob Agents Chemother, 2013, 57(8):3614-3619. doi: 10.1128/AAC.02468-12.
doi: 10.1128/AAC.02468-12 URL |
[41] |
Pasipanodya JG, McIlleron H, Burger A, et al. Serum drug concentrations predictive of pulmonary tuberculosis outcomes. J Infect Dis, 2013, 208(9):1464-1473. doi: 10.1093/infdis/jit352.
doi: 10.1093/infdis/jit352 pmid: 23901086 |
[42] |
Alffenaar JC, Gumbo T, Dooley KE, et al. Integrating Pharmacokinetics and Pharmacodynamics in Operational Research to End Tuberculosis. Clin Infect Dis, 2020, 70(8):1774-1780. doi: 10.1093/cid/ciz942.
doi: 10.1093/cid/ciz942 URL |
[43] |
Deshpande D, Alffenaar JC, Köser CU, et al. d-Cycloserine Pharmacokinetics/Pharmacodynamics, Susceptibility, and Dosing Implications in Multidrug-resistant Tuberculosis: A Faustian Deal. Clin Infect Dis, 2018, 67(Suppl 3):S308-S316. doi: 10.1093/cid/ciy624.
doi: 10.1093/cid/ciy624 URL |
[44] |
Winter H, Ginsberg A, Egizi E, et al. Effect of a high-calorie, high-fat meal on the bioavailability and pharmacokinetics of PA-824 in healthy adult subjects. Antimicrob Agents Chemother, 2013, 57(11):5516-5520. doi: 10.1128/AAC.00798-13.
doi: 10.1128/AAC.00798-13 pmid: 23979737 |
[45] |
Sturkenboom MGG, Märtson AG, Svensson EM, et al. Population Pharmacokinetics and Bayesian Dose Adjustment to Advance TDM of Anti-TB Drugs. Clin Pharmacokinet, 2021, 60(6):685-710. doi: 10.1007/s40262-021-00997-0.
doi: 10.1007/s40262-021-00997-0 pmid: 33674941 |
[46] |
吴文文, 陈峰, 郭宏丽, 等. 20家儿童医疗机构常见17种治疗药物监测情况分析. 医药导报, 2020, 39(5):699-703. doi: 10.3870/j.issn.1004-0781.2020.05.026.
doi: 10.3870/j.issn.1004-0781.2020.05.026 |
[47] |
Märtson AG, Sturkenboom MGG, Stojanova J, et al. How to design a study to evaluate therapeutic drug monitoring in infectious diseases? Clin Microbiol Infect, 2020, 26(8):1008-1016. doi: 10.1016/j.cmi.2020.03.008.
doi: 10.1016/j.cmi.2020.03.008 URL |
[1] | 首都医科大学附属北京胸科医院/北京市结核病胸部肿瘤研究所, 中国防痨协会《中国防痨杂志》编辑委员会. 耐药肺结核全口服化学治疗方案中国专家共识(2021年版)[J]. 中国防痨杂志, 2021, 43(9): 859-866. |
[2] | 中国防痨协会. 高危人群结核分枝杆菌潜伏感染检测及预防性治疗专家共识[J]. 中国防痨杂志, 2021, 43(9): 874-878. |
[3] | 周文强, 张爽, 初乃惠. 耐药肺结核全口服治疗方案研究的现状和展望[J]. 中国防痨杂志, 2021, 43(9): 879-882. |
[4] | 逄宇, 高兴辉, 汤一苇, 高孟秋. 基于结核病宿主免疫反应的实验室检测技术及其临床应用[J]. 中国防痨杂志, 2021, 43(9): 883-892. |
[5] | 丁彩红, 熊瑜, 王庆, 高绪胜, 郝焱. 含贝达喹啉方案治疗耐多药肺结核的早期疗效和安全性研究[J]. 中国防痨杂志, 2021, 43(9): 893-898. |
[6] | 吴国兰, 高静韬, 陈晓红, 陈力舟, 翁丽珍, 郭志平, 陈秀平, 林剑东, 陈素霞, 高孟秋, 刘宇红. 含贝达喹啉方案治疗耐多药/广泛耐药结核病的近期疗效及安全性分析[J]. 中国防痨杂志, 2021, 43(9): 899-904. |
[7] | 石文卉, 初乃惠. 耐药肺结核患者氟喹诺酮类药物耐药情况及影响因素[J]. 中国防痨杂志, 2021, 43(9): 905-909. |
[8] | 张婷, 苏倩, 吴成果, 汪清雅, 雷蓉蓉, 陈健. 重庆市肺结核患者直接医疗费用及其影响因素分析[J]. 中国防痨杂志, 2021, 43(9): 910-915. |
[9] | 赵秀娟, 莫菁莲, 孙涛, 刘琳, 钟业腾, 裴华, 夏乾峰. 2015—2019年海南省省级结核病定点医疗机构收治的肺结核患者耐药特征及相关因素分析[J]. 中国防痨杂志, 2021, 43(9): 916-923. |
[10] | 林建, 林淑芳, 戴志松, 赵永, 周银发, 张添林, 魏淑贞. 2016—2019年福建省结核病耐药监测结果分析[J]. 中国防痨杂志, 2021, 43(9): 924-928. |
[11] | 李婷, 何金戈, 夏岚, 陈闯, 肖月, 逯嘉, 王丹霞. 新型冠状病毒肺炎疫情对四川省结核病患者登记情况的影响分析[J]. 中国防痨杂志, 2021, 43(9): 929-938. |
[12] | 易一行, 喻容, 石国民, 马小华, 肖四方, 税剑, 范任华, 向延根. 基于16S rRNA V4区高通量测序的初治菌阳肺结核患者肠道菌群构成与表型分析[J]. 中国防痨杂志, 2021, 43(9): 939-946. |
[13] | 周莹宇, 付雷, 张炜焱, 王彬, 陈曦, 陆宇, 陈效友. 不同耐药类型结核分枝杆菌毒力变化的初步研究[J]. 中国防痨杂志, 2021, 43(9): 952-960. |
[14] | 马婷婷, 任斐, 马进宝, 杨翰. 异烟肼耐药肺结核患者对丙硫异烟胺和对氨基水杨酸的耐药情况分析[J]. 中国防痨杂志, 2021, 43(9): 961-964. |
[15] | 祁雪婷, 陆宇, 陈效友. 抗结核新药药效学特点及相互作用研究[J]. 中国防痨杂志, 2021, 43(9): 965-969. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||