Chinese Journal of Antituberculosis ›› 2025, Vol. 47 ›› Issue (2): 218-223.doi: 10.19982/j.issn.1000-6621.20240369
• Review Articles • Previous Articles Next Articles
You Chengdong1, Zhu Ling2, Li Peibo3()
Received:
2024-08-28
Online:
2025-02-10
Published:
2025-02-08
Contact:
Li Peibo, Email: 157318851@qq.com
Supported by:
CLC Number:
You Chengdong, Zhu Ling, Li Peibo. Research progress on serum trace elements in the development and nutritional support of pulmonary tuberculosis patients[J]. Chinese Journal of Antituberculosis, 2025, 47(2): 218-223. doi: 10.19982/j.issn.1000-6621.20240369
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.zgflzz.cn/EN/10.19982/j.issn.1000-6621.20240369
第一作者 | 年度 | 国家 | 对象 | 样本量 | 干预方案 | 对照组方案 | 随访时间 | 干预结果 |
---|---|---|---|---|---|---|---|---|
Karyadi[ | 2002 | 印度 尼西亚 | 病原学阳 性肺结核 | 110 | 每日视黄醇(1500IU)、维生素 A (5000IU)和硫酸锌(含锌15mg) | 由乳糖组成安慰剂和抗结核药物 | 6个月 | 前2个月提高抗结核效果 |
Range[ | 2005 | 坦桑 尼亚 | 病原学阳 性肺结核 | 499 | 每日锌片(45mg) | 安慰剂片剂的颜色、形状和大小相同 | 2个月 | 痰培养阴转无影响,微量营养素补充剂可增加体质量 |
Pakasi[ | 2010 | 印度 尼西亚 | 病原学阳 性肺结核 | 255 | 每日剂量锌(15mg)、维生素 A(5000IU)和组合剂量 | 安慰剂和抗结核药物 | 6个月 | 单独或联合补充锌和维生素 A不能缩短阴转时间 |
Lawson[ | 2010 | 尼日 利亚 | 病原学阳 性肺结核 | 350 | 每周锌 (90mg)和每日剂量的维生素 A(5000IU) | 安慰剂与抗结核药物 | 6个月 | 痰菌阴转和影像学改变无差异,谨慎补锌 |
Armijos[ | 2010 | 墨西哥 | 病原学阳 性肺结核 | 39 | 每日维生素 A(5000IU)和锌(50mg),持续 4 个月 | 安慰剂组受试者接受感官相同、匹配的安慰剂 | 6个月 | 补锌有助于痰菌阴转和改善免疫反应 |
Visser[ | 2011 | 南非 | 病原学阳 性肺结核 | 154 | 每日棕榈酸视黄酯 (200000IU) 和锌(15mg),持续 8 周 | 标准抗结核药物 | 2个月 | 痰菌转化、影像学、身高无差异,不影响2个月内的抗结核效果 |
Zolfaghari[ | 2021 | 伊朗 | 病原学阳 性肺结核 | 74 | 隔日1次补锌(50mg) | 安慰剂和抗结核药物 | 6个月 | 前6周有利于痰菌阴转 |
[1] | 中华医学会结核病学分会重症专业委员会. 结核病营养治疗专家共识. 中华结核和呼吸杂志, 2020, 43(1):17-26. doi:10.1016/S2666-5247(22)00359-7. |
[2] | Franco JV, Bongaerts B, Metzendorf MI, et al. Undernutrition as a risk factor for tuberculosis disease. Cochrane Database Syst Rev, 2024, 6(6):CD015890. doi:10.1002/14651858.CD015890.pub2. |
[3] |
Phelan JJ, Basdeo SA, Tazoll SC, et al. Modulating iron for metabolic support of TB host defense. Front Immunol, 2018, 9:2296. doi:10.3389/fimmu.2018.02296.
pmid: 30374347 |
[4] | Dai Y, Shan W, Yang Q, et al. Biomarkers of iron metabolism facilitate clinical diagnosis in Mycobacterium tuberculosis infection. Thorax, 2019, 74(12):1161-1167. doi:10.1136/thoraxjnl-2018-212557. |
[5] |
Mazumder MK, Rahim MA, Ahmed S, et al. Serum Zinc Concentrations in Patients with Pulmonary Tuberculosis. Mymensingh Med J, 2018, 27(3):536-543.
pmid: 30141443 |
[6] | Shankar AH, Prasad AS. Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr, 1998, 68(2):447S-463S. doi:10.1093/ajcn/68.2.447S. |
[7] | Liu T, Ramesh A, Ma Z, et al. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nat Chem Biol, 2007, 3(1):60-68. doi:10.1038/nchembio844. |
[8] | Wolschendorf F, Ackart D, Shrestha TB, et al. Copper resis-tance is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci, 2011, 108(4):1621-1626. doi:10.1073/pnas.1009261108. |
[9] | Mehri A. Trace Elements in Human Nutrition (Ⅱ)-An Update. Int J Prev Med, 2020, 11:2. doi:10.4103/ijpvm.IJPVM_48_19. |
[10] |
Hussain MI, Ahmed W, Nasir M, et al. Immune modulatory and anti-oxidative effect of selenium against pulmonary tuberculosis. Pak J Pharm Sci, 2019, 32(2(Supplementary)):779-784.
pmid: 31103972 |
[11] | Shan L, Wang Z, Wu L, et al. Statistical and network analyses reveal mechanisms for the enhancement of macrophage immunity by manganese in Mycobacterium tuberculosis infection. Biochem Biophys Rep, 2024, 37:101602. doi:10.1016/j.bbrep.2023.101602. |
[12] |
Neyrolles O, Wolschendorf F, Mitra A, et al. Mycobacteria, metals, and the macrophage. Immunol Rev, 2015, 264(1):249-263. doi:10.1111/imr.12265.
pmid: 25703564 |
[13] | Feng Q, Lin Q, Yao F, et al. Discovering novel biomarkers for diagnosis and treatment monitoring of active pulmonary tuberculosis by ion metabolism analysis. Microbiol Res, 2024, 283:127670. doi:10.1016/j.micres.2024.127670. |
[14] |
Minchella PA, Donkor S, McDermid JM, et al. Iron homeostasis and progression to pulmonary tuberculosis disease among household contacts. Tuberculosis, 2015, 95(3):288-293. doi:10.1016/j.tube.2015.02.042.
pmid: 25764944 |
[15] |
Luo Y, Xue Y, Lin Q, et al. A combination of iron metabolism indexes and tuberculosis-specific antigen/phytohemagglutinin ratio for distinguishing active tuberculosis from latent tuberculosis infection. Int J Infect Dis, 2020, 97:190-196. doi:10.1016/j.ijid.2020.05.109.
pmid: 32497795 |
[16] |
Cernat RI, Mihaescu T, Vornicu M, et al. Serum trace metal and ceruloplasmin variability in individuals treated for pulmonary tuberculosis. Int J Tuberc Lung Dis, 2011, 15(9):1239-1245. doi:10.5588/ijtld.10.0445.
pmid: 21943852 |
[17] | Frediani J, Tukvadze N, Sanikidze E, et al. Serial Iron, Zinc and Copper Status in Adults with Pulmonary Tuberculosis in the Country of Georgia. FASEB J, 2015, 29(S1):729.22. doi:10.1096/fasebj.29.1_supplement.729.22. |
[18] |
Deveci F, Ilhan N. Plasma malondialdehyde and serum trace element concentrations in patients with active pulmonary tuberculosis. Biol Trace Elem Res, 2003, 95(1):29-38. doi:10.1385/BTER:95:1:29.
pmid: 14555797 |
[19] |
Kassu A, Yabutani T, Mahmud ZH, et al. Alterations in serum levels of trace elements in tuberculosis and HIV infections. Eur J Clin Nutr, 2006, 60(5):580-586. doi:10.1038/sj.ejcn.1602352.
pmid: 16340948 |
[20] |
Nizamani P, Afridi HI, Kazi TG, et al. Essential trace elemental levels (zinc, iron and copper) in the biological samples of smoker referent and pulmonary tuberculosis patients. Toxicol Rep, 2019, 6:1230-1239. doi:10.1016/j.toxrep.2019.11.011.
pmid: 31799123 |
[21] |
Drakesmith H, Prentice AM. Hepcidin and the iron-infection axis. Science, 2012, 338(6108):768-772. doi:10.1126/science.1224577.
pmid: 23139325 |
[22] |
Tashiro K, Yamamoto M, Ushio R, et al. Hepcidin exerts a negative immunological effect in pulmonary tuberculosis without HIV co-infection, prolonging the time to culture-negative. Int J Infect Dis, 2019, 86:47-54. doi:10.1016/j.ijid.2019.06.023.
pmid: 31252187 |
[23] | Waworuntu W, Tanoerahardjo FS, Mallongi A, et al. Serum iron levels in tuberculosis patients and household contacts and its association with natural resistance-associated macrophage protein 1 polymorphism and expression. Clin Respir J, 2023, 17(9):893-904. doi:10.1111/crj.13677. |
[24] | Cioboata R, Vasile CM, Balteanu MA, et al. Evaluating Serum Calcium and Magnesium Levels as Predictive Biomarkers for Tuberculosis and COVID-19 Severity: A Romanian Prospective Study. Int J Mol Sci, 2023, 25(1):418. doi:10.3390/ijms25010418. |
[25] | Agrawal Y, Goyal V, Singh A, et al. Role of anaemia and magnesium levels at the initiation of tuberculosis therapy with sputum conversion among pulmonary tuberculosis patients. J Clin Diagn Res, 2017, 11(6):BC01-BC04. doi:10.7860/JCDR/2017/23734.9975. |
[26] |
Sepehri Z, Arefi D, Mirzaei N, et al. Changes in serum level of trace elements in pulmonary tuberculosis patients during anti-tuberculosis treatment. J Trace Elem Med Biol, 2018, 50:161-166. doi:10.1016/j.jtemb.2018.06.024.
pmid: 30262275 |
[27] |
Ciftci TU, Ciftci B, Yis O, et al. Changes in serum selenium, copper, zinc levels and cu/zn ratio in patients with pulmonary tuberculosis during therapy. Biol Trace Elem Res, 2003, 95(1):65-72. doi:10.1385/BTER:95:1:65.
pmid: 14555800 |
[28] |
Mohan G, Kulshreshtha S, Sharma P. Zinc and copper in Indian patients of tuberculosis: impact on antitubercular therapy. Biol Trace Elem Res, 2006, 111(1-3):63-70. doi:10.1385/BTER:111:1:63.
pmid: 16943598 |
[29] |
Choi R, Kim HT, Lim Y, et al. Serum Concentrations of Trace Elements in Patients with Tuberculosis and Its Association with Treatment Outcome. Nutrients, 2015, 7(7):5969-5981. doi:10.3390/nu7075263.
pmid: 26197334 |
[30] | Qi C, Wang H, Liu Z, et al. Oxidative Stress and Trace Elements in Pulmonary Tuberculosis Patients During 6 Months Anti-tuberculosis Treatment. Biol Trace Elem Res, 2021, 199(4):1259-1267. doi:10.1007/s12011-020-02254-0. |
[31] |
Feleke BE, Feleke TE, Mekonnen D, et al. Micronutrient levels of tuberculosis patients during the intensive phase, a prospective cohort study. Clinical Nutrition ESPEN, 2019, 31:56-60. doi:10.1016/j.clnesp.2019.03.001.
pmid: 31060835 |
[32] |
Moraes MLD, Ramalho DMDP, Delogo KN, et al. Association between serum selenium level and conversion of bacteriological tests during antituberculosis treatment. J Bras Pneumol, 2014, 40(3):269-278. doi:10.1590/s1806-37132014000300010.
pmid: 25029650 |
[33] | Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care, 2009, 12(6):646-652. doi:10.1097/MCO.0b013e3283312956. |
[34] | Maywald M, Rink L. Zinc in Human Health and Infectious Diseases. Biomolecules, 2022, 12(12):1748. doi:10.3390/biom12121748. |
[35] |
Karyadi E, West CE, Schultink W, et al. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: effects on clinical response and nutritional status. Am J Clin Nutr, 2002, 75(4):720-727. doi:10.1093/ajcn/75.4.720.
pmid: 11916759 |
[36] | Range N, Andersen ÅB, Magnussen P, et al. The effect of micronutrient supplementation on treatment outcome in patients with pulmonary tuberculosis: a randomized controlled trial in Mwanza, Tanzania. Trop Med Int Health, 2005, 10(9):826-832. doi:10.1111/j.1365-3156.2005.01463.x. |
[37] | Pakasi TA, Karyadi E, Suratih NMD, et al. Zinc and vitamin A supplementation fails to reduce sputum conversion time in severely malnourished pulmonary tuberculosis patients in Indonesia. Nutr J, 2010, 9(1):41. doi:10.1186/1475-2891-9-41. |
[38] | Lawson L, Thacher TD, Yassin MA, et al. Randomized controlled trial of zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis: Zinc and vitamin A as co-adjuvants for the treatment of pulmonary tuberculosis. Trop Med Int Health, 2010, 15(12):1481-1490. doi:10.1111/j.1365-3156.2010.02638.x. |
[39] | Armijos RX, Weigel MM, Chacon R, et al. Adjunctive micronutrient supplementation for pulmonary tuberculosis. Salud Pública de México, 2010, 52(3):185-189. doi:10.1590/s0036-36342010000300001. |
[40] |
Visser ME, Grewal HM, Swart EC, et al. The effect of vitamin A and zinc supplementation on treatment outcomes in pulmonary tuberculosis: a randomized controlled trial. Am J Clin Nutr, 2011, 93(1):93-100. doi:10.3945/ajcn.110.001784.
pmid: 21068353 |
[41] | Zolfaghari B, Ghanbari M, Musavi H, et al. Investigation of Zinc Supplement Impact on the Serum Biochemical Parameters in Pulmonary Tuberculosis: A Double Blinded Placebo Control Trial. Rep Biochem Mol Biol, 2021, 10(2):173-182. doi:10.52547/rbmb.10.2.173. |
[42] | Cabrera Andrade BK, Garcia-Perdomo HA. Effectiveness of micronutrients supplement in patients with active tuberculosis on treatment: Systematic review/Meta-analysis. Complement Ther Med, 2020, 48:102268. doi:10.1016/j.ctim.2019.102268. |
[43] | Wagnew F, Alene KA, Eshetie S, et al. Effects of zinc and vitamin A supplementation on prognostic markers and treatment outcomes of adults with pulmonary tuberculosis: a systematic review and meta-analysis. BMJ Glob Health, 2022, 7(9):e008625. doi:10.1136/bmjgh-2022-008625. |
[44] | Nenni V, Nataprawira HM, Yuniati T. Role of combined zinc, vitamin A, and fish oil supplementation in childhood tuberculosis. Southeast Asian J Trop Med Public Health, 2013, 44(5):854-861. |
[45] |
Lodha R, Mukherjee A, Singh V, et al. Effect of micronutrient supplementation on treatment outcomes in children with intrathoracic tuberculosis: a randomized controlled trial. Am J Clin Nutr, 2014, 100(5):1287-1297. doi:10.3945/ajcn.113.082255.
pmid: 25332327 |
[46] |
Minchella PA, Donkor S, Owolabi O, et al. Complex Anemia in Tuberculosis: The Need to Consider Causes and Timing When Designing Interventions. Clin Infect Dis, 2015, 60(5):764-772. doi:10.1093/cid/ciu945.
pmid: 25428413 |
[47] | Kaushik SR, Sahu S, Guha H, et al. Low circulatory Fe and Se levels with a higher IL-6/IL-10 ratio provide nutritional immunity in tuberculosis. Front Immunol, 2022, 13:985538. doi:10.3389/fimmu.2022.985538. |
[48] |
Cercamondi CI, Stoffel NU, Moretti D, et al. Iron homeostasis during anemia of inflammation: a prospective study of patients with tuberculosis. Blood, 2021, 138(15):1293-1303. doi:10.1182/blood.2020010562.
pmid: 33876222 |
[49] | Devi U, Rao CM, Srivastava VK, et al. Effect of iron supplementation on mild to moderate anaemia in pulmonary tuberculosis. Br J Nutr, 2003, 90(3):541-550. doi:10.1079/bjn2003936. |
[50] | Qian K, Shan L, Shang S, et al. Manganese enhances macrophage defense against Mycobacterium tuberculosis via the STING-TNF signaling pathway. Int Immunopharmacol, 2022, 113(Pt B):109471. doi:10.1016/j.intimp.2022.109471. |
[51] | Qi M, Zhang H, He JQ. Higher blood manganese level associated with increased risk of adult latent tuberculosis infection in the US population. Front Public Health, 2024, 12:1440287. doi:10.3389/fpubh.2024.1440287. |
[52] | 陈志, 梁建琴. 结核病重症患者营养评估及营养支持治疗专家共识. 中国防痨杂志, 2022, 44(5):421-432. doi:10.19982/j.issn.1000-6621.20220041. |
[1] | Liu Yiping, Lin Youfei, Chen Xiaohong, Pan Jianguang. A case of pulmonary Castleman disease prone to misdiagnosis: a literature review [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 921-929. |
[2] | Wang Yutong, Liu Yuhong, Li Liang. Research progress on psychological and psychiatric adverse reactions induced by antituberculosis drugs [J]. Chinese Journal of Antituberculosis, 2025, 47(7): 947-953. |
[3] | Zhang Peize, Gao Qian, Deng Guofang. [18F]FDT-PET-CT technology that may bring revolutionary changes to tuberculosis clinical research [J]. Chinese Journal of Antituberculosis, 2025, 47(3): 262-265. |
[4] | Fu Ying, Xiong Yangyang, Fang Si, Li Chuanxiang, Guo Hongrong. The research progress on the relationship between serum albumin and its derivative biomarkers and chronic obstructive pulmonary disease [J]. Chinese Journal of Antituberculosis, 2025, 47(2): 231-236. |
[5] | Li Wenhan, Yang Jing, Li Chunhua. Research progress of artificial intelligence in pulmonary tuberculosis imaging diagnosis and drug resistance prediction [J]. Chinese Journal of Antituberculosis, 2024, 46(9): 1098-1103. |
[6] | He Xiangrong, Chen Hua, Chen Pinru, Liang Feng, Ren Huili, Zhu Jialou, Hu Jinxing, Tan Yaoju. A case report and literature review of Mycobacterium asiaticum pulmonary disease [J]. Chinese Journal of Antituberculosis, 2024, 46(7): 763-769. |
[7] | Xu Wenhui, Zhang Yanqiu, Shi Jie, Sun Dingyong. Advances in biomarker research for tuberculosis diagnosis [J]. Chinese Journal of Antituberculosis, 2024, 46(6): 713-721. |
[8] | Shang Xuetian, Pan Liping. Role of tissue kallikrein family in pathogenesis of microorganism infection [J]. Chinese Journal of Antituberculosis, 2024, 46(2): 239-244. |
[9] | Chen Yujie, Wang Linghua, Cheng Xiaoyan, Li Huiyuan. Research progress on latent tuberculosis infection in medical staff [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1541-1547. |
[10] | He Jing, Zhang Zhongfa. Research progress on mixed infection in pulmonary tuberculosis patients [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1566-1572. |
[11] | Li Chaofan, Chen Zhi. Advances in the application of animal models and 3D cell models in tuberculosis research [J]. Chinese Journal of Antituberculosis, 2024, 46(12): 1527-1534. |
[12] | Wang Yujin, Chu Naihui, Nie Wenjuan. Research progress in the treatment of tuberculosis with contezolid [J]. Chinese Journal of Antituberculosis, 2024, 46(11): 1395-1399. |
[13] | Yan Hongxuan, Yuan Jinfeng, Wang Yilin, Pang Yu, Gao Mengqiu. Advances in the host-directed therapy of tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1273-1282. |
[14] | Liu Kejun, Zhang Haipeng, Wang Peng. Overview of genomic research on Mycobacteriophages [J]. Chinese Journal of Antituberculosis, 2024, 46(10): 1283-1292. |
[15] | Wang Jiani, Xi Mingxia. Progress in catastrophic health expenditures for tuberculosis [J]. Chinese Journal of Antituberculosis, 2024, 46(1): 112-118. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||